SGS SPAtially Referenced Regressions On Watershed Attributes

ing world

Sources of Suspended Sediment in the Chesapeake Bay

Watershed
A Regional Application of the SPARROW Model

Accepted for publication:
Journal of American Water
Resources Association

(JAWRA) August, 2010.

John W. Brakebill
Scott W. Ator
Gregory E. Schwarz




& USGS SPARROW modeling

The Goal is to Gain a Comprehensive Understanding
of the Long-Term Steady State of Sediment Supply
and Transport in the Chesapeake Bay Watershed

® Regional approach
— Identify the spatial TR
variability and magnitude =~
of sediment sources
— Quantify the contributions
— What are the factors
affecting transport
Although SPARROW
models provide a regional
perspective, additional
information may be
required at the local scale ™%
to gain a detailed
understanding




SPARROW Mass-Balance Model
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Downstream
monitoring

station, X Point source
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L oad originating within the
reach’s incremental watershed
and delivered to the reach
segment

Nonlinear model
structure includes
topography and water
routing; provides
separation of land and
water processes

Steady-state, mass-
balance structure
gives improved
interpretability of the
model coefficients and
predictions

Schwarz et al,, 2006
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e The geographic extent of the
model includes the Chesapeake
Bay watershed and adjacent
areas of southern Virginia and
northern North Carolina

Area is 57% forest, 22% ag, 9%
urban and suburban

Calibrated to 129 estimates of
mean-annual flux for a base year
of 2002

— Flux estimates are developed
by relating sediment
concentration (SSC and TSS)
to continuous streamflow and
time

— Period of record -1970 - 2004

® Monitoring is referenced to 1:500k
reaches, ~3,500 reaches
® Mean catchment area 75 km?

Chesapeake Bay Sediment SPARROW Model
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‘USGS Calibration Station Distribution

129 stations MAX Q3 MEDIAN |Q1 |QR

Area 70,005 799 1,655
(km?)
MEANQ 37,451 429 818
(CFS)

LOAD 3,612,188 | 145,057 17,590 141,549
(Malyr)
Yield 1,453 55 19 : 47
(Mg/km?)

Flux ranges 4 orders of magnitude
Monitored area ranges 3 orders of magnitude




Explanatory Variables
Sediment Source Parameters (Supply)

Small Stream Channels < 35 CFS (meters of stream length)
— Represents bank, bed, and flood-plain erosion
2002 Total Agriculture Area (km¥?)*
Net increase of Imperviousness Area (km¥)*
— Area in 2002 minus area in 1992
2002 Forest Area (km¥)*

Factors Affecting Transport
Mean Basin Slope (percent)
Reservoir Density (fraction)
Piedmont Uplands (7.5 million scale, Fenneman and Johnson)
Soil Permeability (/nches/hour)

Aquatic Transport
Stream attenuation (Storage)
— First order Decay

Reservoir transport/storage (On Network Reach)
— Mean settling Velocity




%USGS Model Statistics R2=0.83, Yield R2=0.57, RMSE = .96, N = 129
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EXPLANATORY VARIABLE

Sources

Agriculture Area, 2002

Forested Area, 2002

0.98

1.44

Urban Development, 1992-02

3,928.41

1,370.07

Stream Channel < 35cfs, Coastal
Plain

0

Stream Channel < 35cfs, Other Prov.

Aquatic Storage

CP Streams (120 — 250 ft3/sec)

CP Streams (> 250 ft3/sec)

On-reach reservoirs
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Source Shares

¢ Incremental
(local) sources

— how much is
generated in
each catchment?
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EXPLANATION

Incremental Yield
<12 Mg per km2 per year
12-24
24 - 55
B 55120
- > 129 Mg per km2 per year
e F3ll Line

Tributary Boundary

How much is
generated
locally
independent
of upstream
contributions

01530 60 90 120
Kilometers

Incremental Yield

Atlaniic

: Ccean

Modified from Brakebill et al., 2010, JAWRA

Applications — Geographic targeting

EXPLANATION

Delivered Yield
<12 Mg per km2 per year
12-24
24 - 55

B 55120
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s Fall Line
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USGS Appllcatlons — Geographlc targeting

a changing world
EXPLANATION

Additional information B oricuture [ Wl

12.000001 - 24.000000
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- 129.000001 - 237.656465
e Ability to look at each
source individually

¢ Js sediment yield
related to
urbanization?

¢ Js sediment yield
related to
agriculture?

e QOther sources?
e QOther factors?

Upper Monocacy River Basin




a USGS

science for a changing world

Application — Quantifying Sediment Supply

Sediment Source Distribution By Physiography
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Application — Quantifying Sediment Supply
Delivery to the Bay
Sediment Source Distribution

¢ Quantified Source Flux (106 Mg/year)
amounts of each |Agriculture 51% 1.50
sediment source Urban Development | 39% 1.16

transported to the |Forest 08% 0.25
Bay Small Streams 02% 0.05

ciag LOAL | 2.96]
e Can be quantified

and mapped at
any location on
the network

Brakebill et al., 2010, JAWRA
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a USGS Applications — Land-to-water delivery

. EXPLANATION
Fa Cto rS affeCtI n g Ove rl a n d Effects of Land to Water

Sed i ment tra n Spo rt Sediment Flux Greatly Impeded

Sediment Flux Impeded
- Sediment Flux Enhanced

4 Comblned effECtS Of Il scdiment Flux Greatly Enhanced ' ' E
overland transport -

* Properties suggest areas \
more or less vulnerable to \

RUEV, = exp IZ [(Zm,— Zm) = Bm]l s

m=1

m = significant overland transport landscape variable;

Zm; = the value of landscape variable, m, in reach subwatershed, 7;

Zm = the mean of Zm over all i; and g R
o || oy
Al 4
\‘ [ N :n
#m = the mean model — estimated coefficient for landscape variable,m ¥4 “34. - e s,

Modified from Brakebill et al., 2010, JAWRA
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And Ator et al., 2010, FISC Y i s~




Conclusions

Applying the SPARROW model provides the ability to gain a
regional understanding of sediment supply, fate, and transport
within the Chesapeake Bay watershed

— The SPARROW model demonstrates reasonable relations between the
response variable (long-term water-quality conditions) and selected
exploratory data representing supply, transport, and storage.

SPARROW predictions can be used for:

— Identifying individual source contributions and their relative importance
— Identifying important transport factors and their relative importance

— Quantifying relative amounts of sediment generated and transported to
Chesapeake Bay

— Geographic targeting for further study, additional monitoring, or
management actions

Brakebill et al., 2010, JAWRA




& USGS Conclusions

Sediment yields (export coefficient) are greatest from areas of urban
development (represented by an increase in impervious surface)

Agriculture is widespread and a significant source of sediment
to local streams and Chesapeake Bay

In-stream sources (bank, bed, or flood plain erosion) are also
significant in small streams above the Fall Line

The Piedmont province generates and delivers more sediment
than any other physiographic province, where agriculture and
urbanization are the dominant sources

Upland sediment transport to streams is greatest in areas with
greater slope, fewer reservoirs, less permeable soils, and in the
Piedmont

Net retention (storage) of sediment occurs

— Within the stream network in large Coastal Plain streams
— In reservoirs

Brakebill et al., 2010, JAWRA
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