Looking Forward:
Priorities for Managing Freshwater Resources in a Changing Climate

National Action Plan Update

Water Resources and Climate Change Workgroup
Climate change projections indicate a steady increase in temperature progressing through the 21st century, generally resulting in snowpack reductions, changes to the timing of snowmelt, altered stream flows, and reductions in soil moisture, all of which could affect water management, agriculture, recreation, hazard mitigation, and ecosystems across the nation. Despite some widespread similarities in climate change trends, climate change will affect specific water basins in the U.S. differently, based on the particular hydrologic and geologic conditions in that area.

Photo Credit: U.S. Geological Survey.
TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION: PROGRESS AND CHALLENGES

1 DATA AND RESEARCH

1.1 Recommendation: Sustain and expand existing monitoring networks and data collection on hydrologic and meteorological conditions and water demand

1.1.1 Strategic Action - Continue to identify and address data gaps and needs for water resource management

1.1.2 Strategic Action - Expand adoption of reference monitoring networks to establish baseline conditions for evaluating impacts due to climate change

1.2 Recommendation: Modernize statistical analyses of observational data sets to improve understanding of emerging trends associated with climate change

1.2.1 National Oceanic and Atmospheric Administration Precipitation Frequency Datasets

1.2.2 Flood Frequency Guidelines

1.2.3 Streamflow Statistics.

1.3 Recommendation: Improve reliability and accessibility of water-related projections of future conditions

1.3.1 Strategic Action: Evaluate the feasibility of developing the capability to project water temperature under future climates.

1.3.2 Strategic Action: Evaluate the feasibility of integrating climate-impacted hydrology projections with projections of population and land use.

1.4 Recommendation: Enhance water supply through innovative technologies

1.4.1 Strategic Action: Enhance water supply through investment in energy-water technologies

1.4.2 Strategic Action: Improve water use efficiency in agriculture

2 PLANNING AND DECISION SUPPORT

2.1 Recommendation: Advance regional coordination among federal water resource management agencies to support climate change adaptation and resilience efforts

2.1.1 Strategic Action - Develop new regional Federal Agency Support Teams (X-FAST) for Water Resources Management

2.1.2 Strategic Action - Expand engagement of Federal water resource agencies in regional cooperative efforts on climate science and decision-making

2.1.3 Strategic Action – Encourage agencies to consider the effects of climate change on water resources and the implications for federal agency supply chains

2.1.4 Strategic Action - Develop case studies to inform restoration of wetlands to build resilience

2.2 Recommendation: Develop guidance and provide assistance to communities and water resource managers on use of climate change information and tools for assessing vulnerability and building resilience
2.2.1 Strategic Action - Develop an online dashboard to help water resource managers and urban planners prepare for and respond to extreme events

2.2.2 Strategic Action - Streamline access to climate adaptation information for the water theme of the Climate Resilience Toolkit

2.2.3 Strategic Action - Adopt a system for coordinating vulnerability assessments and advancing peer-to-peer learning

2.2.4 Strategic Action - Continue to develop, distribute, and provide guidance on the use of projected future climate information for water resources management

2.2.5 Strategic Action - Evaluate credit provided within the FEMA Community Rating System for the development of watershed scale plans for managing flooding that consider projected climate changes

3 TRAINING & OUTREACH

3.1 Recommendation: Increase involvement in the U.S. Climate Resilience Toolkit Water Theme

3.1.1 Strategic Action - Develop learning progressions to improve the utility and accessibility of the Climate Resilience Toolkit Water Theme

3.1.2 Strategic Action - Ensure new water-related training opportunities are accessible through the Climate Resilience Toolkit

3.1.3 Strategic Action - Help build a network of technical expertise on water and climate change, available on request

3.1.4 Strategic Action - Form stakeholder partnerships to improve delivery of training on use of existing tools and to identify new training needs

3.1.5 Strategic Action - Develop a focused communication and outreach effort to expand awareness of the Toolkit offerings

3.2 Recommendation: Support and enhance the Climate Change and Water Working Group Professional Development Series

3.2.1 Strategic Action - Continue to add new content to the Climate Change and Water Working Group Professional Development Series

3.2.2 Strategic Action - Workgroup agencies should work with the Climate Change and Water Working Group to identify gaps and develop courses to broaden offerings

3.2.3 Strategic Action - Identify ways to sustain the Climate Change and Water Working Group Professional Development Series and expand the student base

4 WORKGROUP MANAGEMENT AND COORDINATION

4.1 Recommendation: Ensure effective support for the Workgroup to maintain continuity of interagency collaboration and leadership among Federal water resource agencies

4.1.1 Strategic Action - Rotate workgroup leadership among member agencies to provide fresh perspectives in leadership

4.1.2 Strategic Action - Strengthen staffing to support the Workgroup

5 APPENDICES

Appendix A: Inventory of Major Hydro-climatic Data Collection Systems in the U.S.
Appendix B: Regional Collaborations

- DOI Climate Science Centers
- DOI Landscape Conservation Cooperatives (LCCs)
- NOAA Regional Integrated Science and Assessments (RISAs)
- US Army Corps of Engineers Silver Jackets
- USDA Climate HUBS

Appendix C: Summary of Strategic Actions and Lead Agencies

WORKGROUP MEMBERS
EXECUTIVE SUMMARY

The National Action Plan: Priorities for Managing Freshwater Resources in a Changing Climate (NAP) was published in 2011 as the product of the Federal interagency Water Resources and Climate Change Workgroup (Workgroup). Since then, member agencies have worked together to make notable progress in advancing understanding of climate change impacts on water resources and developing information and new approaches to adapt to these changes.

Meanwhile, the Nation has witnessed the effects of more intense storms, drought, and unseasonable weather that is causing significant damage to property and loss of life. Consequently, interest in building greater resilience to extreme weather phenomena and other impacts of a changing climate has grown among state, tribal and local communities.

In presenting this draft Looking Forward report updating the 2011 NAP, the participating Federal agencies are reaffirming the importance of continuing to improve the Nation’s ability to respond to the impacts of climate change on water resources. This draft report takes into consideration the recommendations of the State, Tribal and Local Leaders Task Force, the Climate and Natural Resources Workgroup, the Advisory Committee on Water Information, and public input in other forums. This draft document is not an inventory of the wide range of activity underway among water resources agencies throughout the Federal government; rather, it focuses on addressing the highest priority actions that the Workgroup member agencies are planning to address in the next several years. General recommendations and specific actions are identified in three thematic areas.

Data and Research

Many different water resource managers and others throughout society rely largely on the Federal government’s data systems to collect and analyze information on hydro-meteorological conditions. Maintaining observational networks remains a challenging task and there is a recognized need to better understand how to both detect emerging trends attributable to climate change as well as how to incorporate the concept of nonstationarity into projections of future conditions. Meanwhile, the competing demands for use of water resources suggests that research into improving water use efficiencies could benefit not only water supply managers but also users such as the energy and

agricultural sectors that rely on availability of supplies for production. The Workgroup suggests strategic actions addressing four key recommendations:

1. Sustain and expand existing monitoring networks and data collection on hydrologic and meteorological conditions and water demand;
2. Modernize statistical analyses of observational data sets so that climate changes that have already occurred are recognized in water resources decision-making;
3. Improve reliability and accessibility of water-related projections of future conditions;
4. Enhance water supply and reduce water use through investment in energy-water technologies and improved agricultural practices.

Please see Appendix C: Summary of Strategic Actions and Lead Agencies for a tabulation of all Strategic Actions and lead Agencies.

Planning and Decision Support

It has long been recognized that climate change impacts are unique to every locality and sector and that solutions are also necessarily unique. Managing the development of new information and tools and applying them to localized decisions necessitates close cooperation among researchers and practitioners. Many activities are underway to ‘downscale’ production, delivery, and application of information to more regional and local levels. Improving collaboration between agencies and regional and local decision makers and improving guidance on use of climate information is the focus on the following two recommendations and the associated strategic actions:

1. Advance regional coordination among Federal water resource management agencies to support climate change adaptation and resilience efforts.
2. Develop guidance and provide assistance to communities and water resource managers on use of climate change information and tools for assessing vulnerability and facility resilience.

Training and Outreach

In response to the demand for access to information about projected impacts of climate change, there has been an information explosion as Federal agencies, local planners, nonprofit organizations, and the private sector have developed many different websites, models, guidebooks, and training resources, on ways to evaluate climate change vulnerability and to inform water resource decisions. Now, water resource decision-makers are expressing frustration at the overwhelming amount of information. Decision-makers need to know how to readily find applicable information and how to decide which tools best support a specific decision. The Workgroup, therefore, intends to undertake actions in support of the following recommendations:

1. Increase involvement in the U.S. Climate Resilience Toolkit Water Theme.
3. Encourage stakeholder partnerships to improve delivery of tools and training and to identify gaps.

Workgroup Management and Coordination

Finally, there are more than a dozen Federal agencies involved in some aspect of water resources management, all of which are undertaking various efforts to incorporate climate change considerations into their programmatic missions. Given the inter-related nature of agencies’ respective programs, it is important that agencies continue to work together to leverage resources, find synergies, and develop consistency. To ensure ongoing coordination, the Workgroup intends to:

1. Ensure effective support for the Workgroup to maintain continuity of interagency collaboration and leadership on climate change adaptation among Federal water resource agencies.

The recommendations and strategic actions in this *Looking Forward* document are recognized as high priorities that need to be pursued in the coming years. As this work proceeds, however, new priorities are likely to emerge and the Workgroup will work to recognize new challenges and refocus efforts as needed.

Today, there's no greater threat to our planet than climate change.

-- President Barak Obama, Weekly Address, April 18, 2015
INTRODUCTION: PROGRESS AND CHALLENGES

Background and Goal of National Action Plan

The National Action Plan: Priorities for Managing Freshwater Resources in a Changing Climate (NAP)⁵ was published in 2011 as the product of the interagency Water Resources and Climate Change Workgroup (the Workgroup). The NAP reflected Federal agencies’ commitment to develop a coordinated effort to tackle the challenges posed by climate change for water resources management. The 2011 report outlined six priority areas with 24 specific “Supporting Actions” that Federal agencies engaged in water resources management would undertake to understand and address climate change challenges. The six priority areas were:

1) Establish a Planning Process;
2) Improve Information for Decision Making;
3) Strengthen Vulnerability Assessments;
4) Expand Water Use Efficiency;
5) Support Integrated Water Resources Management; and
6) Support Training and Outreach.

Working together, Federal agencies have made notable progress in each of these six priority areas, as reflected in annual reports⁶ of the Workgroup. For example, some notable advances are:

- Creating a 40 member stakeholder advisory group on climate change and water resources as part of the Advisory Committee on Water Information (ACWI);
- Recognizing climate change in water planning Principles⁷ and Requirements;
- Expanding and upgrading reporting requirements for waterborne disease outbreaks expected to increase as water and air temperatures warm;
- Developing vulnerability assessment tools for water managers including tools for understanding climate vulnerability of water utilities, watersheds, and national forests;

The Water Resources and Climate Change Workgroup was established in 2009 by the Interagency Climate Change Adaptation Task Force, and continues to operate under the auspices of the 2013 President’s Climate Action Plan and Executive Order 13653.

• Supporting water use efficiency through expansion of the WaterSense program, the Department of Interior WaterSmart program, and related efforts;
• Advancing pilot projects to demonstrate how integrated water resources management can address climate change impacts and challenges; and
• Developing training programs addressing climate change and water resources management challenges for Federal government employees and others.

Implementing the NAP over the past several years has been coordinated with related efforts including the National Ocean Policy, the National Fish, Wildlife and Plants Climate Adaptation Strategy and the National Drought Resilience Partnership. Another collaboration among Federal agencies is the Federal Climate Change and Water Working Group, a technical forum to share expertise across Federal science and water resource management agencies. Furthermore, Federal agencies all have been implementing their own adaptation plans working with stakeholders to focus on mission-related water issues.

Meanwhile, as risks inherent in a changing climate were better understood, and as the Nation continued to witness impacts of a changing climate, the Federal government developed new initiatives and activities to tackle the complex challenges posed by climate change. For example, under Executive Order 13653, the President established the Climate and Natural Resources Working Group as well as the State, Local and Tribal Leaders Task Force, each of which identified recommendations and priorities that provide context for this NAP update.

Process to “Refresh” the National Action Plan

Addressing issues and needs related to water resources and a changing climate in the U.S. has evolved significantly since the NAP was issued in 2011 and it is appropriate to step back and consider next steps. During discussions of new directions convened in Spring 2015, two key ideas emerged. First, there is a need for a forum to promote interagency dialogue and to lend continuity to Federal work to adapt water resources management to a changing climate. Second, there are additional

8 Note: Climate change and water issues for aquatic habitat as well as for terrestrial habitat are more fully addressed in the Fish, Wildlife & Plants Climate Adaptation Strategy.
9 For comprehensive information about the President’s climate change initiatives, see: https://www.whitehouse.gov/administration/eop/ceq/initiatives/resilience
10 Climate Change and Water Working Group website: http://www.ccawwg.us/.
11 Federal Agency Adaptation Plans are available here: http://www.performance.gov/node/3406/view?view=public#supporting-info
opportunities for Federal agencies to strengthen water resources management to better respond to climate change.

It is in this spirit that the Workgroup has chosen to “refresh” its approach – first by reaffirming its role as a community-of-practice convener and second by articulating particular focus areas for advancement. To address these two goals, the Workgroup decided to “refresh” the 2011 NAP and develop this “Looking Forward” document.

At the outset, the Workgroup convened a listening session webinar to solicit public comments. The Workgroup asked for input on several questions, including:

- What are the most important issues you are dealing with due to current or anticipated effects of climate change?
- In what way can Federal agencies facilitate your ability to manage water resources in the face of climate change?
- What are your greatest training and outreach needs?
- What are the most important decision support tools that could be provided by Federal agencies?
- What are the most important data gaps or research topics that Federal agencies should be addressing?

Comments submitted during and after the webinar were incorporated into deliberations. The Workgroup also reviewed several recent documents that identified particular needs for building resilience in the water resource management sector. These documents included an April 2014 report by the Advisory Committee on Water Information, titled *Next Steps for Managing Freshwater Resources in a Changing Climate*; the November 2014 Recommendations of the State, Local, and Tribal Leaders Task Force On Climate Preparedness and Resilience; and the *Priority Agenda* of the Climate and Natural Resources Workgroup published in October 2014.

Considering progress made to date, input received in the listening session, and review of recent reports and recommendations, the Workgroup decided to re-focus on three substantive themes:

- Data and Research
- Planning and Decision Support
- Training and Outreach

Interagency teams of Federal staff drawn from the Workgroup were formed into four teams to address these three themes plus ongoing Workgroup management. These themes form the organizational structure for this document represented as chapters of this report. Further, each team was directed to focus attention in three areas - primarily related to needs identified by the State, Local and Tribal Leaders Task Force:

- Evaluate long-term risks of climate change on water resources availability;
- Provide guidance on assessments of vulnerability of water infrastructure; and
- Promote integrated watershed management and planning to protect water quality and quantity.

In addition, the Workgroup intends to continue to actively engage in the Water Theme of the Climate Data and Tools Initiative, which includes both Climate Data.gov and the Climate Resilience Toolkit\(^\text{17}\) and will continue to inform and advise the Climate and Natural Resources Workgroup under the President’s Climate Action Plan.

Federal agencies are implementing many other activities to address climate change in addition to the strategic actions articulated in the 2011 NAP and related reports. This document does not attempt to comprehensively inventory, track, or document all the efforts underway that are addressing the impacts of climate change on water resources. Rather, the actions identified in this report were selected either to address important gaps as possible with existing resources, or to lend support for particularly important activities that, in the Workgroup’s view, merit further consideration.

1 DATA AND RESEARCH

Various users of environmental and water information have expressed concerns related to the state of water data collection – how well observation networks are being sustained now and into the future to provide adequate and consistent data collection for evaluation of long-term trends in hydrological and meteorological conditions, how this information is transferred between agencies and to the public, how to best use information to address climate change issues, and how to develop partnerships supporting these efforts.

For example, the Advisory Committee on Water Information (ACWI), made the following recommendations related to water information and climate change:

- **Ensure continuity and viability of long-term hydro-climate observations and data management systems**
- **Enhance data access and interoperability of data systems.... This includes the development of an integrative tool to assist in the access to data and information from multiple sources.**
- **Bolster critical data sets, including those related to groundwater, stream and river flow, waterborne disease, water use, and paleoclimate reconstruction.**

Further, of the three State, Local Tribal Leaders Task Force recommendations that the Workgroup is tackling, one focuses specifically on water information:

Promote risk assessment information and risk analyses to identify “hot spots” across the country where water demand is high and water availability is low, [including through] the national water census, [highlighting] water resource availability issues, further collaborating with state and tribes, and developing potential frameworks in collaboration with partners.

The Data and Research Team concurs with these recommendations. Federal agencies have long played a significant role in supporting data collection, data analysis, and modeling, providing essential information for many types of decisions. Water supply managers, flood control engineers, land use planners, and many others have long relied on federal data systems to inform planning and design – and need to understand and prepare for the added complications posed by climate change.

Federal agencies are working to maintain and improve the availability and accessibility of water data and information, including information to inform decision-making in light of climate change. For example:

- **The Open Water Data Initiative (OWDI)**\(^\text{18}\) of the Advisory Committee on Water Information (ACWI) was started to “integrate currently fragmented water information...”

\(^{18}\) Open Water Data Initiative. http://acwi.gov/spatial/index.html,
into a connected, national water data framework and leverage existing systems, infrastructure and tools to underpin innovation, modeling, data sharing, and solution development.”

- The National Groundwater Network\(^{19}\) that includes multiple agencies is working to improve the accessibility of groundwater information.
- Coastal communities are collaborating to add LIDAR data for improved mapping of coastal flood risk\(^{20}\).
- The U.S. Forest Service and partners have developed the National Stream Internet, a statistical and geospatial framework for organizing physical, chemical, and biological data about streams.

While efforts are underway to make existing datasets more accessible, the underlying data collection networks must also be strengthened. Further, while some monitoring networks provide good spatial and temporal coverage others do not. It is important to sustain these networks and fill gaps. **Appendix A: Inventory of Major Hydro-climatic Data Collection Systems in the U.S.** highlights some of the critical networks that are of particular concern for informing decision making to build resilience to climate change.

While managing water depends on the use of energy, producing energy depends on access to water supplies. Research into innovative technologies offer hope for reducing demand on limited water supplies while ensuring a reliable energy grid.

More work remains to support well-informed decisions and to manage current and future risk. In particular, the Workgroup recommends focused attention to four key areas.

1. Sustain and expand existing monitoring networks and data collection on hydrologic and meteorological conditions and water demand;
2. Modernize statistical analyses of observational data sets so that climate changes that have already occurred are recognized in water resources decision-making;
3. Improve reliability and accessibility of water-related projections of future conditions; and
4. Enhance water supply through innovative technologies.

These issues are elaborated in the following recommendations and strategic actions that the Workgroup believes should be prioritized.

1.1 RECOMMENDATION: SUSTAIN AND EXPAND EXISTING MONITORING NETWORKS AND DATA COLLECTION ON HYDROLOGIC AND METEOROLOGICAL CONDITIONS AND WATER DEMAND

Federal agencies managing freshwater data systems work with States and other partners to provide the most complete and reliable data possible. The nation has many monitoring systems and data networks important to protecting public health and aquatic resources including those for streamflow, water quality, groundwater, meteorology, snow and ice, and soil moisture. However, monitoring systems and data networks need ongoing support to maintain and expand their value. In fact, even robust networks have gaps in terms of spatial coverage or monitoring capabilities.

Given the diverse range of Federal agencies that support these systems, strong communication among agencies helps to focus resources on critical priorities and avoid duplication of effort. Some steps that Federal agencies should take to build on this progress and strengthen cooperation and communication on water data issues, and thus strengthen the capacity to support informed climate adaptation decisions, are described below.

1.1.1 Strategic Action - Continue to identify and address data gaps and needs for water resource management

The Federal agency managers of the multiple data systems related to water resources would benefit from a forum for sharing information about operations of the systems, planned changes, and options for addressing emerging challenges such as climate change. These activities should be a regular agenda item for this Workgroup or a subgroup under this Workgroup that is formed specifically on this topic.

This team should consider convening a national water data forum on this issue as well as conducting a more comprehensive survey of monitoring systems with a special focus on data needed by climate change adaptation decision-makers. Appendix A represents a basic inventory of federal data capabilities and needs that should be enhanced.

Goals for this team’s activities would include identifying opportunities for federal agencies to collaboratively fill gaps in water data, expand spatial coverage of existing data collection systems, or make other improvements that would strengthen data collection and management to support water resource management in a changing climate. Some of these improvements may involve little or no cost and can be adopted using existing resources or by modifying existing processes. Other priority improvements may require supplemental funding in the budgets of individual agencies.

1.1.2 Strategic Action - Expand adoption of reference monitoring networks to establish baseline conditions for evaluating impacts due to climate change

The Workgroup realizes that it is challenging to discern changes in water resources variables that are due to the impacts of climate change versus land use change or other stressors. "Reference
sites” offer an opportunity to try to understand such causation. Citing the Advisory Committee on Water Information (ACWI):\(^{21}\)

A significant challenge faced by water-resource scientists in the public and private sectors is the need for reliable long-term data and information from watersheds minimally disturbed by human activities. Monitoring in areas with minimal human disturbance helps to provide (1) an understanding of natural patterns of variability that can be used to differentiate changes due to land and water use from changes associated with natural climatic cycles and (2) reference information that can be used to establish water-quality criteria or appropriate expectations for watershed restoration. These synoptic measurements provide important information for understanding natural spatial patterns and variability. Unfortunately, there are relatively few sites among networks with long-term records for streamflow, water chemistry, and stream ecology necessary to distinguish changes associated with natural climatic cycles.

Highlighting the availability of data at reference monitoring sites as well as expanding data collection from reference monitoring sites can yield information that broadens decision makers’ understanding of what to expect in the future and how to target protective activities. Therefore the Workgroup intends to work with Agencies and the Advisory Committee on Water Information (ACWI) to further inventory such networks and make this information more readily available.

1.2 RECOMMENDATION: MODERNIZE STATISTICAL ANALYSES OF OBSERVATIONAL DATA SETS TO IMPROVE UNDERSTANDING OF EMERGING TRENDS ASSOCIATED WITH CLIMATE CHANGE

Various federal agencies have historically compiled statistical analyses based on observational data that are used in many ways throughout society. For example, NOAA Atlas 14 is based on precipitation gages throughout the U.S. and provides Intensity, Duration, and Frequency estimates used in engineering designs for applications such as stormwater infrastructure. USGS analyzes streamflow gages to compile stream flow statistics used, for example, in water quality evaluations and infrastructure design for floods, and the Bulletin 17B standard provides guidance on estimation procedures for flood frequency.

Such statistical methods are foundational for engineers and water managers. Concerns have been raised on two aspects of these methods. First, some of the statistics have not been updated in many years; for example, some have not included analyses of more recent data, while others may not be based on more advanced methods, thus raising concerns about the accuracy of the statistics. Second, statistical methods developed in the past did not necessarily

take into account a nonstationary climate, and therefore designing systems based on the past may not be protective under future climate regimes without some further consideration.

Given the importance of these heavily used statistics, new analysis of historic data is needed to understand how water-specific variables are changing, whether changes are consistent with climate model projections, and how to understand climate trends along with other drivers such as water diversion or land use change. To this end, the federal government should work with stakeholders such as the Advisory Committee on Water Information and standards setting bodies to re-evaluate, update and modernize statistical analyses of observational data as appropriate and to evaluate options for evaluating nonstationary trends that could inform decision making under future climates. In particular, the Workgroup recommends the following priorities.

1.2.1 National Oceanic and Atmospheric Administration Precipitation Frequency Datasets

These datasets are used to help estimate the severity of real events and to inform infrastructure design. The current approach to develop the data is based on a stationary climate. NOAA has done some work to consider how to address non-stationarity in NOAA Atlas 14 statistical estimates intensity, duration and frequency of precipitation. Furthermore, statistics for several parts of the country have not been updated in recent decades. The Workgroup strongly recommends that Agencies work with NOAA to ensure that this work is undertaken in the near future.

1.2.2 Flood Frequency Guidelines

Flood Frequency Guidelines, known as Bulletin 17B, support planning and engineering design to reduce flood risks. Bulletin 17B was published in 198, and is currently being updated as Bulletin 17C by the Subcommittee on Hydrology of the Advisory Committee on Water Information22. The proposed Bulletin 17C guidelines, while an improvement from the older Bulletin 17B methods, do not provide guidance on methods for considering potential climate change. The Workgroup recommends that follow-on work be done to develop best practices for considering non-stationarity in flood frequency analyses.

1.2.3 Streamflow Statistics.

Many different users at the federal, state, and local level use instream flow statistics to design and manage water infrastructure and water quality. Streamflow data are collected by USGS, USACE, as well as states. Similarly, USGS and other compute statistical estimates. USGS and USEPA are working to update statistical methods and to explore ways to evaluate potential future impacts of climate change. However, more work is needed to ensure access to updated flow statistics.

1.3 **RECOMMENDATION:** IMPROVE RELIABILITY AND ACCESSIBILITY OF WATER-RELATED PROJECTIONS OF FUTURE CONDITIONS

A substantial amount of work is underway in the community of researchers who produce and use projections of future climate risks and impacts. This community includes parts of many Federal agencies as well as state, local, tribal, and private-sector organizations. Despite this growing body of work, some water resource managers still find it difficult to understand and appropriately use these projections. In an effort to improve accessibility and utility of projections, activities are underway to catalogue describe, and provide guidance for different users.

1.3.1 **Strategic Action:** Evaluate the feasibility of developing the capability to project water temperature under future climates.

Climate models commonly generate projections in terms of changes in air temperatures, precipitation, extreme weather, and rain/snow shifts but do not project changes in water temperatures. There is growing evidence, however, that water temperatures are increasing in water bodies at rates that are different than the increases in ambient air temperatures. In addition, even small increases in water temperature have the potential to degrade water quality and, more specifically, promote harmful algal blooms or threaten cold-water fisheries. The Workgroup will work with Federal agency research programs and the academic community to conduct a preliminary feasibility evaluation of developing methods that project changes in water temperatures for various types of water bodies in different regions of the country.

1.3.2 **Strategic Action:** Evaluate the feasibility of integrating climate-impacted hydrology projections with projections of population and land use.

Climate models project changes in precipitation and other hydrologic variables of interest. These projections can be used to estimate long-term changes in stream flows that are critical for long-term water resources planning and engineering design. These long-term changes in streamflow are central to many climate change vulnerability assessments and response plans. Streamflow, however, is also influenced by the condition of the watershed and variables such as soil moisture and groundwater recharge. Land use, water demand, and water system operational decisions also affect streamflow; land use in particular is closely correlated with changes in population and resulting changes in impervious surfaces that affect watershed conditions.

Some long-term models are available that project changes in population and land use on time-scales comparable to those of climate change models. Examples include USEPA’s Integrated
Climate and Land-Use Scenarios (ICLUS)23 database, USGS’s FORE-SCE mode24, and the Forestry and Agricultural Sector Optimization Model (FASOM)25. Previous studies26 that integrate land use changes with climate model projections suggest such integration can have significant effects on projections of future streamflow in specific watersheds and at specific spatial scales. The Workgroup will work with the Federal agency research programs and the academic community to identify and expand (where feasible) research efforts on integrating these projections to generate more reliable projections of streamflow and other impacts.”

1.4 **RECOMMENDATION: ENHANCE WATER SUPPLY THROUGH INNOVATIVE TECHNOLOGIES**

Federal agencies have conducted research in evaluating the safe and productive use of nontraditional water sources (e.g., saline, brackish, impaired groundwater, etc.,) for major water use sectors, such as agriculture and energy production. Increased water use efficiency as well as the use of nontraditional water by major water users has the potential to mitigate shortages of freshwater by displacing or augmenting its use.

1.4.1 **Strategic Action: Enhance water supply through investment in energy-water technologies**

Energy and water are interdependent, and the availability and predictability of water resources can directly affect energy systems and energy security. Changes in hydrology in major regions of the country will not only strain water resources, but also will likely pose significant problems for the domestic energy sector that relies heavily on secure and reliable water availability. For example, thermoelectric power generation withdraws large quantities of fresh water for cooling. Expanded use of nontraditional waters, such as brackish and saline waters, for energy can protect and increase the Nation’s water supply.

While technologies such as desalination have been practiced at commercial scales for decades, the production of water of acceptable quality requires energy, and efforts are needed to reduce

25 Drs. Bruce McCarl (Texas A&M University) and Darius Adams (Oregon State University) developed the Forestry and Agricultural Sector Optimization Model (FASOM) initially. A research consortium that includes members from USEPA, USDA, USDA Forest Service, Duke University, RTI International, Oregon State University and the Electric Power Research currently maintains it. A variant of the FASOM model with Greenhouse Gases (FASOM-GHG) has been used in several EPA analyses and USDA’s Resources Planning Assessment. The EPA peer review of the FASOM model by EPA can be found here: http://www3.epa.gov/climatechange/Downloads/EPAactivities/peerreview_FASOM.pdf.

Energy will launch a new Energy-Water Desalination Hub focused on researching and developing technologies to reduce the cost, energy input, and associated greenhouse gas emission levels of desalination. DOE will also invest in complementary research on desalination technologies relevant to fossil, concentrated solar power, and geothermal applications. The Department will also invest in research, development and demonstration of efficient heat exchanger and other technologies to reduce water requirements at thermoelectric power plants.

1.4.2 Strategic Action: Improve water use efficiency in agriculture

Agricultural irrigation relies on access to significant quantities of water and, under pressure from climatic challenges such as wide-spread regional drought, increasingly having to compete for limited supplies with municipal users, the energy sector, and ecological needs. Agriculture is also facing increased pressure from climatic challenges such as the drought in western states. While this sector has significantly increased its water use efficiency over the past decades, greater efficiencies are needed to ensure a reliable food supply. USDA will continue to work to find ways to improve agricultural technologies that conserve water and increase efficiencies.
This chapter highlights recommendations and strategic actions that support planners, policy makers, and decision makers to manage freshwater resources in a changing climate. Existing tools as well as those that are in development are considered in order to identify particular areas that remain challenging. For example, some of the challenges expressed by stakeholders are that decision makers may not know how to find, select, or use existing tools. This could be addressed by developing various scenarios that could be considered prior to making a decision. For example, the Office of Science and Technology Policy, through existing interagency work groups or committees, could provide a consistent range of national, regional, and local scenarios based on downscaled climate information with which to evaluate options. Another challenging area is helping decision makers understand how to embrace uncertainty in decision processes.

This section reframes and combines aspects of three of the priority areas from the 2011 NAP, i.e., strengthen vulnerability assessments, expand water use efficiency, and support integrated water resources management. The Advisory Committee on Water Information (ACWI) also made recommendations in these areas, including:

- Develop guidance and build capacity for assessing vulnerability.
- Collaborate with non-Federal water partners to improve future tool development.
- Prioritize agriculture for development of "nationally consistent metrics for water use efficiency".
- Update Federal efficiency standards for showerheads, faucets, toilets, and urinals.
- Promote water efficiency and reuse/reclamation.
- Create regional Federal Agency Support Teams modeled after the Western States Federal Agency Support Team (WestFAST).
- Create incentives for State, interstate, local and tribal governments to plan on a watershed basis for preparedness and resilience.
- Create incentives to incorporate ecosystem services (i.e., natural capital).

In addition, the State, Local Tribal Leaders Task Force recommended the following focus areas related to policy, planning, and decision support:

- Identify “hot spots” where water demand is high and water availability is low.

28 Recommendations to the President, President’s State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, November, 2014. https://www.whitehouse.gov/sites/default/files/docs/task_force_report_0.pdf
Bridge the communication gap between science and management to address
downsampling, decision support, vulnerability assessment, and practical guidance.

Establish regional interagency water security partnerships with state, local, and tribal
partners.

There are several activities underway throughout the federal government that are not included
in the current set of recommendations. Their importance should not be diminished, however, as
they are critical activities that need federal agencies to follow through. Examples include
incentivizing use and protection of ecosystem services, i.e., natural capital,\(^{29}\) and adopting and
promoting green infrastructure to manage stormwater, reduce urban heat island effects, and
provide other benefits.\(^{30}\)

Considering past recommendations, ongoing activities, and recent developments, the team
recommends the following:

1. **Recommendation: Advance regional coordination among federal water resource
management agencies to support climate change adaptation and resilience efforts**

2. Develop guidance and provide assistance to communities and water resource managers
on use of climate change information and tools for assessing vulnerability and facility
resilience.

2.1 **Recommendation: Advance regional coordination among federal water resource
management agencies to support climate change adaptation and resilience efforts**

Many federal agency climate change adaptation and resilience activities are underway across the
country, and coordination has advanced. Partnerships and activities underway include the
Department of Interior Climate Science Centers and Landscape Conservation Cooperatives,
NOAA’s Regional Integrated Science and Assessments, the Army Corps of Engineers Silver Jackets
teams, and the U.S. Department of Agriculture Climate Hubs, as well as other federal activities

\(^{29}\) For information about Ecosystem Services, see: *Incorporating Ecosystem Services into Federal Decision Making*,

\(^{30}\) For information about Green Infrastructure, see also: Federal Agency Support for the Green Infrastructure

National Park Service INSTEP for Design and Construction Transportation Projects,
http://www.nps.gov/articles/transinstep.htm?

National Association of Regional Councils, *A Roadmap to Green Infrastructure in the Federal Agencies*,
Despite these many activities, there are still opportunities to improve coordination to assist state, tribal and local partners.

2.1.1 Strategic Action - Develop new regional Federal Agency Support Teams (X-FAST) for Water Resources Management

As suggested in the Climate and Natural Resources Working Group Priority Agenda, Federal agencies will use the Western States Water Council’s Federal Agency Support Team (WestFAST) as a template and model to facilitate collaboration between other states and the Federal government regarding water resources management generally, and water-related climate issues more specifically. The success of WestFAST is a model for addressing cross-boundary and multi-institutional stakeholder-driven issues, including those that are affected by federal activities or that could benefit from federal engagement. The Federal X-FAST team will work to develop potential new regional opportunities to work with stakeholders, identify regional issues, and recommend focus areas that would benefit from involvement by an X-FAST or other regional interagency team.

2.1.2 Strategic Action - Expand engagement of Federal water resource agencies in regional cooperative efforts on climate science and decision-making

Federal agencies have deployed substantial resources to develop climate science at the regional level and support State and local climate resilience efforts. USDA has established Climate Hubs, NOAA has established Regional Integrated Science and Assessments (RISAs), and DOI has established Climate Science Centers and worked with partners to stand up Landscape Conservation Cooperatives (LCCs) across the country. There has been some engagement of water resource management agencies in these efforts, for instance BOR is co-lead for two LCCs, and EPA and USACE participate on many LCC Steering Committees. Federal agency support for State and local climate resilience would be strengthened by expanded participation of Federal water resource management agencies in the regional climate science and services effort. A key step in this direction is for Federal water resources management agencies to more consistently participate in the existing regional programs (e.g., Hubs, RISAs, CSCs, and LCCs). In addition, these components of Federal agencies work together to coordinate investments and stakeholder engagement. For example, under section 10 of the President’s Sustainability Executive Order, EO 13693, agencies are working together to assure that climate services at the regional level are well coordinated. The water resources management agencies should support this work to strengthen cooperation among Federal agencies providing climate resilience services at the regional level.

2.1.3 Strategic Action – Encourage agencies to consider the effects of climate change on water resources and the implications for federal agency supply chains

While the direct effects of climate change may disrupt the functioning of federal, state, and local governments and communities, indirect effects may be as significant because of climate change effects on suppliers to these organization and communities. Changes in sea level and changes in the frequency, intensity, and duration of storms have the potential to prevent, disrupt, or delay the production and delivery of goods and provision of services that are critical. Drought can parallel these effects regionally, e.g., insufficient water for operation. The large number and geographical dispersion of suppliers across the U.S. and around the world makes it likely that a subset of all suppliers will likely be affected at some point in the future by climate change. Agencies are already directed in Executive Order 13693 to consider the need to improve climate adaptation and resilience with respect to agency suppliers and supply chains. The Workgroup will initiate conversations with the Office of Federal Sustainability and collaborate to provide information on the effects of climate change on water resources and its implications for federal agency supply chains in order to inform their overall climate change adaptation and sustainability planning.

2.1.4 Strategic Action - Develop case studies to inform restoration of wetlands to build resilience

Wetlands provide a range of services for society; they buffer the impact of storms, filter pollutants, and sequester carbon. Federal, state and tribal governments are working to understand impacts of climate change on these services and how to leverage wetland protection and restoration that effectively increase community resilience. Building on the wetland mapping work referenced in the 2011 NAP, the Workgroup now recommends that agencies increase collaboration to conduct pilot studies to inform restoration of key wetlands, such as in the Chesapeake Bay watershed, to both protect wetlands from the impacts of climate change where feasible as well as to help build community resilience.

2.2 Recommendation: Develop guidance and provide assistance to communities and water resource managers on use of climate change information and tools for assessing vulnerability and building resilience

There is a plethora of new tools, data and trainings being produced which, while responsive to demand, can, in turn, contribute to confusion and duplication of effort. This recommendation asks that we take a step back and help users better understand the resources that are available and how to begin to use them in decision-making.

2.2.1 Strategic Action - Develop an online dashboard to help water resource managers and urban planners prepare for and respond to extreme events

In response to stakeholders’ request, NOAA will lead an effort to develop a dashboard for centralized access to a variety of information sources that can be quickly accessed and
customized for local use. Such a dashboard of existing sources would enable users to access datasets related to forecasts and outlooks, e.g., precipitation totals and outlooks, observations, daily summaries from weather stations, current drought, etc.; and, people and assets, e.g., land cover and watersheds. Using hyperlinks, the water managers and planners would be able to go directly to the data sources for more information or to directly download data sets, if desired.

2.2.2 Strategic Action - Streamline access to climate adaptation information for the water theme of the Climate Resilience Toolkit

A wealth of climate adaptation information has come online in recent years, so much so that stakeholders express frustration at the prospect of wading through it all to find what is relevant to the decisions they are seeking to inform. NOAA will collaborate with partners to refine the user interface to the toolkit that will connect people to specific tools and resources that fit their particular needs and interests. Reducing the time it takes to find useful tools for a wide variety of applications and information relevant to water resource decision makers will increase the uptake of these products that were developed to help build the nation’s resilience to climate change and other stressors.

2.2.3 Strategic Action Adopt a system for coordinating vulnerability assessments and advancing peer-to-peer learning

More and more communities and institutions have been evaluating the vulnerability of many different aspects of the natural and built systems at different scales, using various methods and for diverse issues. Stakeholders have expressed interest in a means of facilitating geographic coordination as well as peer-to-peer learning. There is value in making a publicly available consolidated repository of completed vulnerability assessments, and therefore the Workgroup should evaluate options for more fully filling this need. One option to consider adopting and promoting is the Climate Registry on the Assessment of Vulnerability (CRAVe)32 that was developed by USGS and the non-profit EcoAdapt to better understand impacts of climate change on wildlife, ecosystems, and other resources. The registry enables users to enter information or metadata on climate change vulnerability assessment projects completed or underway across the country, pooling examples from federal, state, local, and tribal governments.

2.2.4 Strategic Action – Continue to develop, distribute, and provide guidance on the use of projected future climate information for water resources management

Many Federal agencies, including members of the Water Workgroup, have self-organized into groups to produce or use projections of future climate based on their needs, and application. Some of those groups are also creating guidance on appropriate uses for different types of future projections. These efforts to provide guidance and information on future projections,

32 USGS and EcoAdapt, Climate Registry for the Assessment of Vulnerability, https://nccwsc.usgs.gov/crave/.
including downscaled model results, are being collected and indexed to aid users with specific
needs in finding the information they need.

For example, the U.S. Climate Resilience Toolkit (Toolkit)33 is a central repository within the U.S.
government for projections of future climate made by multiple different approaches. The
Toolkit is designed to be a continuing work-in-progress and does not include all possible future
projections, but is more comprehensive and easier to use than other sites serving future climate
projections that attempts to serve up information for different types of users. In addition, the
U.S., Global Change Research Program34 is developing the Global Change Information System
where examples of appropriate uses of future climate projections will be collected along with
links to the projections and example uses.

The Workgroup will continue to explore ways to improve accessibility, utility, and user-friendly
methods for using climate projections in various kinds of water-related decision processes for
different types of users.

\textbf{2.2.5 Strategic Action - Evaluate credit provided within the FEMA Community Rating System for}
the development of watershed scale plans for managing flooding that consider projected
climate changes

The National Flood Insurance Program’s (NFIP) Community Rating System (CRS) provides
incentives for local communities to adopt flood protection standards and practices that exceed
the minimum standards of the NFIP and that will reduce flood damage and cost. Communities
that adopt specific practices are provided CRS credits that reduce flood insurance policy
premiums. We recommend the CRS program examine current credits and evaluate potential
options for providing credits for the adoption of climate resilience plans by water infrastructure
facilities within the community or region and for the adoption of watershed scale plans for
managing flooding that consider projected climate changes.

As previously discussed, Federal and non-Federal decision makers have expressed a need for better understanding of how to use climate and hydrological data, information, and tools as they develop climate change vulnerability assessments and response plans and make a range of other climate adaptation decisions. As a result, a variety of organizations such as federal agencies, local governments, land-grant universities, and NGOs have been working to address this need. Their collective efforts have resulted in numerous training sites, recorded webinars, and written materials for water resources decision-makers.

These training materials are of varying quality, are found in various websites and other locations, and have been created for different audiences with a wide variety of backgrounds. Given increased interest in using these products, often by those who have limited scientific background, there is a need to streamline access to some of these resources to make them more readily findable, provide appropriate guidance on best practices for using information, and provide a service to the community by making them easier to use.

This opportunity is broad in nature and must be planned to meet the needs of people with varying specialties, skill levels, and project focus. For example, an overview of principles and issues associated with climate adaptation could prove helpful for a policy maker or manager unfamiliar with climate change. On the other hand, an engineer who is concerned with water system operations and design might require an introduction to global change models and climate risk assessment prior to very specific analytical methods.

The need for a more considered focus on meeting training needs has been recognized on a number of fronts. For example, in 2014, the Water Resources Adaptation to Climate Change Workgroup to the Advisory Committee on Water Information made the following recommendations for training and capacity building, briefly summarized:

- Develop mechanisms to facilitate sharing of research and capacity building for climate change adaptation.
- Expand workforce training, college traineeships, training of technical service providers, and training for laypersons.

Climate Literacy

Climate literacy is an understanding of your influence on climate and climate’s influence on you and society. A climate-literate person:

- Understands the essential principles of Earth’s climate system;
- Knows how to assess scientifically credible information about climate;
- Communicates about climate and climate change in a meaningful way; and
- Is able to make informed and responsible decisions with regard to actions that may affect climate.

In addition, the President’s *Priority Agenda for Enhancing the Climate Resilience of America’s Natural Resources* called for the development of a framework for education and training to ensure climate literacy in the federal workforce. Subsequently, the *Federal Framework for Building Climate Literacy and Capabilities* was published December 15, 2015. The Framework describes the importance of a workforce that is able to:

- Understand the diverse range of impacts that a changing climate has on natural, cultural and historic resources and infrastructure, including the underlying scientific principles, historic trends in natural resource conditions, modeled projections of future changes, and uncertainties associated with such projections;
- Critically assess the adequacy of existing institutional planning and decision-making processes within the context of climate risks;
- Routinely assess and communicate the climate risks associated with continuing or departing from business-as-usual operations, including the vulnerability of managed systems; and
- Communicate meaningfully with the public to invite participation in climate preparedness, resilience, and adaptation.

To achieve these objectives, several types of training are needed to meet the needs of different types of users. Training for the general workforce can be basic while resource managers and decision makers may need more advanced training. Additionally, different missions involve a variety of disciplines and information needs, therefore special attention must be paid to developing training that is directly applicable and that equips personnel with specialized functions.

The activities described in this chapter address these recommendations. Furthermore, the proposed work builds on a number of efforts that Federal agencies have made in the last several years. Some examples include:

- The Bureau of Reclamation, Army Corps of Engineers, the University Corporation for Atmospheric Research’s COMET MetEd program, along with other partners, have developed training for water resource professionals incorporating climate science into...
hydrologic assessment studies (http://www.ccawwg.us/index.php/education/recent-training).

- USEPA and its partners present Climate Ready Water Utilities webinars for water utility managers (http://www2.epa.gov/crwu).
- NOAA and its partners have been hosting monthly webinars on “Climate Information for Managing Risks in Water Resources”. (http://cpo.noaa.gov/ClimatePrograms/ClimateandSocietalInteractions/SARPProgram/WebinarsandWorkshops.aspx).
- The Fish and Wildlife Service has developed climate training for conservation professionals (http://training.fws.gov/courses/programs/climate-change/).
- The U.S. Forest Service conducts annual training for land managers with decision–making authority for National Forests that includes anticipated impacts of climate change on aquatic resources and options for adaptation.
- USDA and its partners have convened a ThinkWater Education Summit to increase the impact of existing water education curriculum (http://www.h2osummit.org/).

Given the continuing need for training and outreach, and considering the work already underway by a number of agencies and collaboratives, the Workgroup will focus attention in two key areas:

1. Increase involvement in the U.S. Climate Resilience Toolkit Water Theme.
2. Support and enhance the Climate Change and Water Working Group Professional Development Series.

3.1 Recommendation: Increase Involvement in the U.S. Climate Resilience Toolkit Water Theme

In response to the President’s Climate Action Plan, U.S. Federal government agencies have been working together to build a centralized website that can better convey data, information and tools to the public so they can better understand their risks and vulnerabilities to a changing climate and improve their resilience to extreme events. The Climate Resilience Toolkit (Toolkit)\(^{35}\) is a key component of this plan and federal agencies, under NOAA’s leadership, are working towards answering users’ calls for a one-stop shop for climate adaptation information. The Toolkit provides scientific tools, information, and expertise to help those interested in managing their climate-related risks and opportunities. Within the Toolkit are resources available by various topics, including water resource management.

The Workgroup is uniquely positioned to add content and increase the capabilities of the Toolkit’s Water Resource Management Theme to provide purposeful climate and hydrological information, tools, and training for decision and policy makers. The Workgroup should ensure that the Water Theme is populated with information and training that meets the needs of a wider variety of water resource professionals grappling with climate-related risks and

\(^{35}\) Climate Resilience Toolkit, https://toolkit.climate.gov/.
opportunities. In addition, the Workgroup should ensure that the site is kept up to date as new tools become available.

3.1.1 Strategic Action – Develop learning progressions to improve the utility and accessibility of the Climate Resilience Toolkit Water Theme

While the Toolkit provides a variety of resources and educational opportunities for its users, training resources are listed without sorting for skill levels and types of training. As a result, navigating the toolkit for those with limited climate-related experience may be daunting while those with more knowledge may find it cumbersome. This issue can be addressed by developing a “learning progression” – that is, a system to rate and organize the existing and available training according to a knowledge progression. Under the guidance of the Toolkit organizers, Workgroup members will work with their respective user communities to inventory readily available trainings, recommend sequences for acquiring knowledge and for water resource managers, including those with both little and substantial understanding of climate processes, and ultimately to use these progressions to identify information gaps. These are just two examples of ways to improve delivery of appropriate and useful training for the Toolkit’s Water Theme users.

3.1.2 Strategic Action - Ensure new water-related training opportunities are accessible through the Climate Resilience Toolkit

Federal agencies continue to develop information and training targeted to their constituents that are useful to a variety of users. Further, there is potential for Federal agencies to duplicate efforts by, for example, creating similar training such as Climate 101-type lessons. To ensure comprehensive access to available information and to avoid duplication of effort, the Workgroup should ensure that new offerings are routinely linked to the Toolkit.

Further, while the Toolkit has many different offerings, some users need instruction on how to apply them, especially with regards to more complex scientific information such as models employing downscaled climate models that are difficult for many to understand and apply to their local situations. To fill this need, the Workgroup should collaborate with the NOAA outreach team to conduct live and recorded webinars demonstrating use of the tools for beginners, intermediate and advanced users, all of which can then be posted online.

3.1.3 Strategic Action - Help build a network of technical expertise on water and climate change, available on request

Currently users of the Toolkit can access experts through the “Expertise” section, which consist primarily of state climatologists and federal staff involved with the USDA Climate Hubs, NOAA’s Regional Integrated Science and Assessment centers, and USGS’ Climate Science Centers and Landscape Conservations Cooperatives. The expertise section of the Toolkit should be expanded to include other Federal agency expertise across the country relevant to water resource managers, including regional, local, tribal, and academic experts as well as universities’ Cooperative Extension Services and Water Resources Research institutes.
3.1.4 Strategic Action - Form stakeholder partnerships to improve delivery of training on use of existing tools and to identify new training needs

The Workgroup should form a stakeholder partnership to evaluate existing water-related tools and identify gaps to be filled. At a minimum, these partnerships should address basic climate literacy; intensive and discipline-specific training and targeted workshops; and climate leadership development. Several private sector and nonprofit organizations have developed their own delivery mechanisms, such as the Climate Adaptation Knowledge Exchange (CAKE), Association of Climate Change Officers (ACCO), Climate Central, and others. These voices add innovative and creative perspectives that should be considered for inclusion in the Climate Resilience Toolkit to fill out the one-stop shop concept.

Further, the President’s Council of Advisors for Science and Technology (PCAST)\(^\text{36}\) recommends that the federal government improve development and dissemination of information relevant to the private sector through public-private partnerships. The Water Workgroup will specifically reach out to private sector decision makers in the water sector to improve relevant offerings in the Climate Resilience Toolkit and to improve outreach.

3.1.5 Strategic Action - Develop a focused communication and outreach effort to expand awareness of the Toolkit offerings

The focus of Toolkit activity among Federal agencies has been primarily to build and populate it. In order to increase awareness of how Toolkit content could help communities, the Workgroup recommends redoubling outreach efforts. Furthermore, messaging and content of outreach is best targeted to particular communities of practice. The Workgroup will work with NOAA to develop water-related outreach, including considering convening a workshop with water-related intermediary organizations. This could help with outreach as well as understanding unmet user needs. Such engagement has the potential to provide use cases for additional case studies to expand the Toolkit content as well.

3.2 RECOMMENDATION: SUPPORT AND ENHANCE THE CLIMATE CHANGE AND WATER WORKING GROUP PROFESSIONAL DEVELOPMENT SERIES

The Federal Climate Change and Water Working Group (CCAWWG) was formed in 2007 to provide engineering and scientific collaborations in support of water management under a changing climate. It is an effective working-level forum among federal agencies that fosters communication, as well as operational, and research partnerships to meet user needs across the water resources and science communities of practice. Since 2012, CCAWWG agencies have been working with the University Corporation for Atmospheric Research COMET MetEd

\(^{36}\) President’s Council of Advisors on Science and Technology, https://www.whitehouse.gov/administration/eop/ostp/pcast.
Program37 and NOAA RISAs to develop climate change training resources38. Development of these resources was motivated, in part, by the 2011 NAP Recommendation 6 (Support Training and Outreach to Educate Water Resource Managers and Build Capacity), and Action 21 (Establish a core training program on climate change science). Several online and classroom courses have already been developed and delivered through COMET MetEd. The knowledge, capabilities and insights developed through this activity provide a guide for future efforts.

Two COMET MetEd Professional Development Series are being developed and piloted:

The series feature a mix of instructor-led and online, self-paced courses, with the latter served through COMET’s MetEd website.

\textbf{3.2.1 Strategic Action - Continue to add new content to the Climate Change and Water Working Group Professional Development series}

Climate training collaborators continue to develop, pilot and deliver courses in both series. Planned offerings in 2016 include the following instructor-led courses unless otherwise noted:

- General Water Resource Audiences: (Winter 2016) General Principles of Climate Change Integration into Water Management (\textit{online}); (Spring 2016) Integrating Climate Change into Long-term Planning and Environmental Compliance.
- Water Resource Technical Professionals: (Spring 2016) Sedimentation Impacts Under Climate Change; (Summer 2016) Coastal Impacts and Vulnerability under Sea Level Change; (Fall 2016) Hydrologic Impacts under Climate Change.

After 2016, the development partners should continue to add course subjects with both online and instructor-led format, where initial instructor-led offerings are residence-based followed by future offerings converted to virtual format that allows greater remote participation at lower cost.

\textbf{3.2.2 Strategic Action - Workgroup agencies should work with the Climate Change and Water Working Group to identify gaps and develop courses to broaden offerings}

37 The COMET\textregistered MetEd Program was established in 1989 by UCAR and NOAA’s National Weather Service to promote a better understanding of meteorology among weather forecasters. The COMET MetEd mission has expanded, and today COMET MetEd uses innovative methods to disseminate and enhance scientific knowledge in the environmental sciences. See: \url{http://www.comet.ucar.edu/who_about_us.php}

38 \url{http://www.ccawwg.us/index.php/education/recent-training}
The Climate Change and Water Working Group (CCAWWG) offers a successful model for inter-agency collaboration for developing professional coursework. While coursework has, to date, been developed largely for personnel in operational agencies such as the Bureau of Reclamation and the Corps of Engineers, students from state and local agencies and several non-profit organizations have been recruited and have successfully taken these courses as well. Furthermore, the physical hydrology training created to date is common to many other impacts assessments and is useful as primary input to a range of potential users, as evidenced by the wide range of students already benefiting from this training series. It is intended that other federal agencies will continue to add professional development course work building on this foundation.

The Workgroup agencies will work (as is applicable) with CCAWWG and COMET MetEd to identify the most needed course topics and develop additional coursework that will serve policymaking and operational demands relevant to their agencies and their constituencies.

3.2.3 Strategic Action - Identify ways to sustain the Climate Change and Water Working Group Professional Development Series and expand the student base

The CCAWWG professional development series is intended to serve the demand for technical and managerial training while becoming a financially sustainable activity fueled and funded by broader demand from private and public sector users. The Workgroup will collaborate with CCAWWG to identify ways to sustain the platform, ensure that agency personnel are taking advantage of the training opportunities, and expand the non-federal student base. Such an effort would require exploring marketing and pricing methods and ways to offer competitive incentives for seeking professional continuing education courses, working with federal human resources offices to develop methods for incentivizing uptake, and engaging senior managers in adopting policies for taking these trainings.
Since its inception in 2009, the Workgroup has been co-chaired by three agencies – CEQ, USGS, and USEPA -- and has had active participation of six to eight other agencies concerned with the management of water resources in a changing climate. The Workgroup serves three key functions:

- to facilitate interagency coordination, collaboration, and dialogue on climate change and water matters;
- to ensure long-term continuity and representation about water-related climate change issues; and
- to identify and address evolving priorities for effective management of water resources as the climate changes.

Over the past five years Federal activity on climate change adaptation has increased as Federal, state, and tribal governments, local communities and other stakeholders seek guidance on addressing climate change. The need for the kind of role performed by this Workgroup is expected to continue for the foreseeable future given the importance of managing water resources in a changing climate and the ongoing challenges.

Recognizing resource constraints in light of the wide range of activities underway, it remains a priority to ensure continuity of this Workgroup to help address the nation’s response to climate change in the water sector.

4.1 **RECOMMENDATION: ENSURE EFFECTIVE SUPPORT FOR THE WORKGROUP TO MAINTAIN CONTINUITY OF INTERAGENCY COLLABORATION AND LEADERSHIP AMONG FEDERAL WATER RESOURCE AGENCIES**

To date, three agencies have served as workgroup co-chairs: USGS (a research agency), USEPA (a policy agency), and CEQ (the Administration). Initially, CEQ provided lead staff support with the assistance of USEPA and USGS. Since 2012, the lead staff support role has been assumed by USEPA. In addition, CEQ’s leadership has been – and continues to be - essential for ensuring communication between the Workgroup and the various other activities initiated by the Administration over the years.

4.1.1 **Strategic Action – Rotate workgroup leadership among member agencies to provide fresh perspectives in leadership**

The Workgroup recommends that the leadership structure be reevaluated to share responsibilities and to adapt to changing needs. One recommended option would be to have the science agency and policy agency leadership role rotate every other year. In other words, each year one of the two agency co-chairs will rotate out and a new co-chair from a member agency will rotate in as agreed to by Workgroup members. Thus, each agency will serve in a leadership role for two years. CEQ would remain a co-chair throughout. This structure serves
three purposes: it provides continuity of structure, it shares the role of responsibility, and it brings in fresh perspective on the leadership of the Workgroup.

4.1.2 Strategic Action – Strengthen staffing to support the Workgroup

An effective coordination mechanism depends upon the ability to maintain ‘the big picture,’ to serve as a central coordinator, and to engage with activities that are not directly and immediately related to the activities that Workgroup members are implementing. As the nation’s concerns with climate change ramp up, coordination becomes more essential. The Workgroup has had an effective coordination function to date, but alternative staffing arrangements that could provide more robust support need to be evaluated. The co-chairs will seek to identify a means to improve availability of staff support to ensure the robust functioning of the Workgroup, including support for:

- Workgroup operations including convening monthly meetings, producing annual reports and workplans;
- Implementing key climate adaptation actions and consulting with member agencies implementing actions;
- Coordinating with other Federal climate change adaptation activities such as the National Ocean Policy implementation team, the Fish, Wildlife and Plants Strategy Joint Implementation Working Group (JIWG), the Climate and Natural Resources Working Group, the Climate Data and Tools Initiative, the National Drought Partnership, the U.S. Global Change Research Program, and others;
- Engaging and supporting the Climate Workgroup of the Advisory Committee on Water Information (ACWI)\(^{39}\) and finding opportunities to engage stakeholders in other forums; and
- Identifying opportunities to integrate Workgroup activities with regional federal initiatives.

There is one issue that will define the contours of this century more dramatically than any other and that is the urgent and growing threat of a changing climate.

- President Barack Obama, September 2014, addressing the United Nations

\(^{39}\) ACWI is an existing public advisory body chartered under the Federal Advisory Committee Act (FACA) to advise the Federal government on water issues. The committee is managed by the Department of the Interior and advises a range of Federal agencies on water matters. In 2012, in response to a recommendation in the 2011 NAP, ACWI established the Subcommittee on Water Resources Adaptation to Climate Change. The 40-member committee has been a valuable source of input and feedback, and the Workgroup intends to continue to support and engage with it.
5 APPENDICES

Appendix A: Inventory of Major Hydro-climatic Data Collection Systems in the U.S.
Appendix B: Regional Collaborations
Appendix C: Summary of Strategic Actions
Appendix A: Inventory of Major Hydro-climatic Data Collection Systems in the U.S.

Note: this is not a comprehensive list but is provided as an initial inventory

<table>
<thead>
<tr>
<th>Variable (control-click for description)</th>
<th>Network or Database</th>
<th>Agency</th>
<th>Mission</th>
<th>Status</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streamflow</td>
<td>National Water Information System (NWIS) http://waterdata.usgs.gov/nwis</td>
<td>U.S. Geological Survey</td>
<td>Provide streamflow information for multiple purposes including water management, engineering design, emergency planning, recreation, and scientific study.</td>
<td>Funding for 8100+ real time gages comes from a mix of federal, state, and local sources.</td>
<td>There are clear differences in the density of the streamflow network in different parts of the country. Additional analysis is needed to optimize addition of new gages for the purposes of climate monitoring.</td>
</tr>
<tr>
<td>Water Temperature and other water quality variables</td>
<td>National Water Information System (NWIS) http://waterdata.usgs.gov/nwis</td>
<td>USGS</td>
<td>Provide current and historical information on water quality for the U.S.</td>
<td></td>
<td>The availability of historical records varies greatly by constituent and location in the U.S.</td>
</tr>
<tr>
<td>Variable (control-click for description)</td>
<td>Network or Database</td>
<td>Agency</td>
<td>Mission</td>
<td>Status</td>
<td>Gaps</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Physical, Chemical and Biological Data on Streams</td>
<td>National Stream Internet</td>
<td>US Forest Service</td>
<td>Statistical and geospatial framework to support robust inferences about stream network conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Temperature</td>
<td>NorWeSt</td>
<td>U.S. Forest Service</td>
<td>Based on the National Stream Internet, for current and future conditions under various climate change scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorological Variables</td>
<td>Quality Controlled Local Climatological Data (QCLCD)</td>
<td>NOAA-NCEI</td>
<td>National and global datasets on meteorology and climate-</td>
<td>Many different datasets are available including data from land-based</td>
<td></td>
</tr>
<tr>
<td>Variable (control-click for description)</td>
<td>Network or Database</td>
<td>Agency</td>
<td>Mission</td>
<td>Status</td>
<td>Gaps</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Soil Moisture</td>
<td>soilmoisture</td>
<td>USDA</td>
<td>To implement a nationwide soil-climate network that increases the ability to make sound resource</td>
<td>Presently 221 stations in 40 states and U.S. territories. Not a designated program with annual funding</td>
<td>Number of stations does not provide adequate spatial coverage for tracking and mapping soil moisture/soil temperature values across the US.</td>
</tr>
</tbody>
</table>

Global Historical Climatology Network-Daily (GHCN-D)
https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
and other data sets

Soil Climate Analysis Network (SCAN)
http://www.wcc.nrcs.usda.gov/scan/
<table>
<thead>
<tr>
<th>Variable (control-click for description)</th>
<th>Network or Database</th>
<th>Agency</th>
<th>Mission</th>
<th>Status</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>and watershed management decisions</td>
<td>levels. Funded through initiatives and cooperative agreements with unstable funding.</td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>Snow Survey and Water Supply Forecasting Program http://www.wcc.nrcs.usda.gov/partnerships/links_wsfs.html</td>
<td>USDA Natural Resources Conservation Service</td>
<td>To provide critical high elevation climate information from the major water yield areas of the mountainous west and play a key role in providing near real-time precipitation, air temperature and snowpack</td>
<td>Over 1,100 manual snow courses and 885 automated SNOTEL sites across the western US. Expansion in the number of automated is needed.</td>
<td>Limited stations/data points for many basins in the west. No stations located in the Midwest or eastern parts of the US.</td>
</tr>
<tr>
<td>Variable (control-click for description)</td>
<td>Network or Database</td>
<td>Agency</td>
<td>Mission</td>
<td>Status</td>
<td>Gaps</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Groundwater Networks</td>
<td>National GW Monitoring Network
http://cida.usgs.gov/ngwmn/</td>
<td>Federal Advisory Committee on Water Information (ACWI) and USGS</td>
<td>Integrate groundwater measurements from different networks into one nationally accessible framework.</td>
<td>Integration of networks is just beginning.</td>
<td>Includes the Climate Response Network (USGS), which is designed to monitor wells sensitive to climate conditions, but is incomplete in spatial coverage. Gaps also in monitoring groundwater quality.</td>
</tr>
<tr>
<td>Water use and availability</td>
<td>NWISWeb interface Water Data for the Nation</td>
<td>USGS</td>
<td>Data compiled from state and local sources on a 5-year cycle.</td>
<td>Limited site-specific data and information on consumptive use.</td>
<td></td>
</tr>
<tr>
<td>Variable (control-click for description)</td>
<td>Network or Database</td>
<td>Agency</td>
<td>Mission</td>
<td>Status</td>
<td>Gaps</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Public Health Data</td>
<td>The Waterborne Disease and Outbreak Surveillance System http://www.cdc.gov/mmwr/</td>
<td>Center for Disease Control</td>
<td>WBDOSS collects data on waterborne disease and outbreaks associated with recreational and drinking water, environmental, and undetermined water exposures.</td>
<td>Data collected have been published in CDC reports from 1971 to 1984 and in the Morbidity and Mortality Weekly Report (MMWR) from 1985 to the present.</td>
<td>This system is dependent on states and territories to provide, therefore, funding for to public health departments is essential. Expanding state waterborne disease surveillance capacity in Great Lakes basin states</td>
</tr>
<tr>
<td>Aquatic Animal Health Data</td>
<td>National Wild Fish Health Survey Database https://www.fws.gov/wildfishsurvey/</td>
<td>US Fish and Wildlife Service</td>
<td>To assess health status of aquatic animal health in the wild</td>
<td>Data from 2009-2015 available to the public</td>
<td>Limited to opportunistic data collection by partners and contains geographic limitations.</td>
</tr>
</tbody>
</table>
Description of Needs for improvements of Data Networks

For some of the data types included in the table above, some specific actions that could be considered are described below.

Soil Moisture
Numerous soil moisture networks exist across parts of the US and managed by different federal, state and university groups. A coordinated effort to incorporate these networks into a National Soil Moisture Network, combining in situ measurements with remote sensing data collection and modeling, would provide a single product. The different networks would need a common set of standards and specifications for sensors, data format and other parameters. Additional in situ stations would be needed in areas of sparse coverage to allow for adequate spatial distribution of data collection.

Snow
The Cooperative Snow Survey in the western US provides strong coverage of mountain snowpack utilizing the SNOTEL network and manual snow courses. There are some networks in the eastern US, including data collection for water supplies for New York City and in Maine, but otherwise in situ snowpack measurements for much of the country does not exist. Increased snowpack data collection using automated stations and potentially volunteer observers, similar to CoCoRaHS, combined with remote sensing, such as NOAA’s NOHRSC, could improve assessment of annual snowpack.

Groundwater Networks
Groundwater can be an integrator of short and long-term climate signals, thus long-term groundwater data can be valuable for monitoring climate effects. Water level or spring discharge monitoring should primarily reflect climatic variability and not human influences. A Climate Response Network of wells or springs (hereafter “sites”) is ideal for this research, where uninterrupted, long-term water level or spring discharge records are collected. These data also can be supplemented with long-term data that do not meet such strict criteria. Many Federal and State agencies collect these data. An expansion of the Climate Response Network is underway by the USGS in support of research on climate effects. Additionally, the Subcommittee on Ground Water is building a National Groundwater Monitoring Network composed of data from willing State and Federal agencies. Implementation of these two networks is in the early stages. Support for their continued development is needed to assure that these critical data will be available for future climate effects research.

Water use and availability
The USGS has helped to lay a foundation of water use data through its Water Use in the United States Surveys, carried out every five years since 1950. The USDA, DOE, and EPA also have programs that consider water use. These efforts should be continued and expanded where feasible, with particular emphasis on the programs below.
(a) Continue to support efforts being carried out under the National Water Census managed by the USGS as part of the WaterSmart initiative. The program is helping to develop new sources of data and platforms to integrate data needed to develop water budgets for individual watersheds. The information will help water managers to assess water availability and use. WaterSMART should also continue to carry out associated projects to develop a site-specific water use database for public water systems and efforts to better assess consumptive use of irrigation by better estimating evapotranspiration.

(b) Monitor federal and non-federal efforts to survey water use in the municipal, energy and agricultural sectors, as well as development of metrics and indicators to assess water use. Grants to allow states to support water use data collection efforts as part of the WaterSMART Water Use Data and Research grant program should be continued. To the extent possible, efforts between the federal agencies should be coordinated and data shared with federal and non-federal data users.

(c) Expand efforts to support basin and geographic focus area studies that evaluate supply and demand with an eye towards helping decision makers identify appropriate management strategies. This includes programs carried out by the Bureau of Reclamation and the USGS under the auspices of the WaterSMART program.

Public Health Data

Data on waterborne diseases in the U.S. are documented and reported by state and local health departments to the Centers for Disease Control and Prevention (CDC). Obtaining accurate, consistent and representative epidemiologic data from U.S. States and jurisdictions is essential to understand and track current and emerging diseases that are relevant to climate change and to develop predictive models and control strategies that protect public health. Existing monitoring systems for waterborne diseases and outbreaks should be maintained and expanded to provide baseline data on which to assess future changes in disease occurrence, seasonality or geographic range that may be related to climate change. Specific initiatives that should be supported include:

a) Providing funding to states through the Epidemiologic and Laboratory Capacity grant to support waterborne disease surveillance and detection, laboratory testing, and emergency response capacity;

b) Expanding state waterborne disease surveillance capacity in Great Lakes basin states to improve disease surveillance systems, develop waterborne disease surveillance and response networks, and improve public health capacity for ambient water quality issues, such as harmful algal bloom events and illnesses.

Aquatic Animal Health Data

The nation’s fisheries face many challenges in relation to climate change. There is sufficient evidence that the earth’s atmosphere and oceans are warming. Rising summer water temperatures, drought, severity in rain or snow events and winter-spring flooding are likely to
potentially negatively impact aquatic animal health or wild fish stocks. The USFWS conducts opportunistic sampling of aquatic animals to assess their health status and maintains a Wild Fish Health Survey Database to house this data. The database includes a mapper that can be used to cross reference climate and water level data with health status. A direct outcome of the database is to model potential climate change with disease status in wild aquatic animal populations throughout the United States. This is the only database of its kind and is widely used both nationally and internationally to make management decisions or such things as interstate and international animal movements and to justify species conservation efforts.
APPENDIX B: REGIONAL COLLABORATIONS

DOI Climate Science Centers

The regional Department of the Interior Climate Science Centers (CSCs) partner with natural & cultural resource managers to provide science that helps fish, wildlife, ecosystems & the communities they support adapt to climate change. The Climate Science Centers conduct cutting-edge research projects at local, regional and national scales; and produce products that include climate, water and ecosystem modeling, and geospatial, habitat, and species-level data. The CSCs are built upon federal-university partnerships; provide educational opportunities for students and early career scientists through fellowships, workshops, and training; and work with tribes and indigenous communities to better understand their specific vulnerabilities to climate change and to help them adapt to these impacts. The CSCs are dependent upon engagement with a community of stakeholders to define research priorities and initiatives.

There are eight DOI CSCs:

- Alaska CSC
- Pacific Islands CSC
- North Central CSC
- South Central CSC
- Southeast CSC
- Northeast CSC
- Southwest CSC
- Northwest CSC

DOI Landscape Conservation Cooperatives (LCCs)

Managing the landscapes that provide our natural and cultural resources has become increasingly challenging. The Department of the Interior launched the Landscape Conservation Cooperatives (LCCs) to better integrate science and management to address climate change and other landscape scale issues. By building a network that is holistic, collaborative, adaptive, and grounded in science, LCCs are working to ensure the sustainability of our economy, land, water, wildlife, and cultural resources.

The 22 LCCs collectively form a network of resource managers and scientists who share a common need for scientific information and interest in conservation. Each LCC brings together federal, state, and local governments along with Tribes and First Nations, non-governmental organizations, universities, and interested public and private organizations. Our partners work collaboratively to identify best practices, connect efforts, identify science gaps, and avoid duplication through conservation planning and design.

The 22 DOI LCCs are:

- Aleutian and Bering Sea Islands
- Appalachian
- Arctic
- California
- Caribbean
- Desert
- Eastern Tallgrass Prairie and Big Rivers
- Great Basin
NOAA Regional Integrated Science and Assessments (RISAs)

http://cpo.noaa.gov/ClimatePrograms/ClimateandSocietalInteractions/RISAProgram/AboutRISA.aspx

NOAA’s Regional Integrated Sciences and Assessments (RISA) program supports research teams that help expand and build the nation’s capacity to prepare for and adapt to climate variability and change. Central to the RISA approach are commitments to process, partnership, and trust building. RISA teams work with public and private user communities to advance understanding of context and risk; support knowledge to action networks; innovate services, products and tools to enhance the use of science in decision making; and advance science policy.

There are nine currently funded NOAA RISAS:

- Alaska Center for Climate Assessment and Policy (AACAP)
- California-Nevada Applications Program (CNAP)
- Climate Impacts Research Consortium (CIRC)
- Western Water Assessment (WWA)
- Climate Assessment for the Southwest (CLIMAS)
Silver Jackets teams in states across the United States bring together multiple state, federal, and sometimes tribal and local agencies to learn from one another in reducing flood risk and other natural disasters. By applying their shared knowledge, the teams enhance response and recovery efforts when such events do occur. While some states do not use the “Silver Jackets” name, there are a growing number of states applying the Silver Jackets approach – the ultimate goal is a state-led interagency team in every state. No single agency has all the answers, but leveraging multiple programs and perspectives can provide a cohesive solution.

Although each state Silver Jackets team is unique, common agency participants include state agencies with mission areas of hazard mitigation, emergency management, floodplain management, natural resources management or conservation, etc. Federal participation typically includes the U.S. Army Corps of Engineers and the Federal Emergency Management Agency and often others such as the National Weather Service and the U.S. Geological Survey.

The mission of USDA’s Climate Hubs is to develop and deliver science-based, region-specific information and technologies, with USDA agencies and partners, to agricultural and natural resource managers that enable climate-informed decision-making, and to provide access to assistance to implement those decisions. This is in alignment with the USDA mission to provide leadership on food, agriculture, natural resources, rural development, nutrition, and related issues based on sound public policy, the best available science, and efficient management.
The ten regional USDA Climate Hubs are:

- Northeast
- Southeast
- Caribbean
- Midwest
- Northern Forest
- Northern Plains
- Southern Plains
- Northwest
- Southwest
- California
Team 1: Data and Research (Team Lead: USGS)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strategic Actions</th>
<th>Lead(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: Sustain and expand existing monitoring networks and data collection on hydrologic and meteorological conditions and water demand.</td>
<td>1.1.1 - Continue to identify and address data gaps and needs for water resource management.</td>
<td>USGS</td>
</tr>
<tr>
<td></td>
<td>1.1.2 - Expand adoption of reference monitoring networks to establish baseline conditions for evaluating impacts due to climate change.</td>
<td>EPA</td>
</tr>
<tr>
<td>1.2: Modernize statistical analyses of observational data sets to improve understanding of emerging trends associated with climate change.</td>
<td>1.2.1 - Precipitation Frequency Datasets</td>
<td>NOAA</td>
</tr>
<tr>
<td></td>
<td>1.2.2 - Flood Frequency Guidelines.</td>
<td>USGS</td>
</tr>
<tr>
<td></td>
<td>1.2.3 - Streamflow Statistics.</td>
<td>EPA</td>
</tr>
<tr>
<td>1.3: Improve reliability and accessibility of water-related projections of future conditions.</td>
<td>1.3.1 - Evaluate the feasibility of developing the capability to project water temperature under future climates.</td>
<td>EPA</td>
</tr>
<tr>
<td></td>
<td>1.3.2 - Evaluate the feasibility of integrating climate-impacted hydrology projections with projections of population and land use.</td>
<td>EPA</td>
</tr>
<tr>
<td>1.4: Enhance water supply through innovative technologies</td>
<td>1.4.1 - Enhance water supply through investment in energy-water technologies</td>
<td>DOE</td>
</tr>
<tr>
<td></td>
<td>1.4.2 - Improve Water Use Efficiency in Agriculture</td>
<td>USDA</td>
</tr>
</tbody>
</table>

Team 2: Planning and Decision Support (Team Lead: USACE)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strategic Actions</th>
<th>Lead(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Advance regional coordination among federal water resource management agencies to support climate change adaptation and resilience efforts</td>
<td>2.1.1 - Develop new regional Federal Agency Support Teams (X-FAST) for water resources management.</td>
<td>USACE</td>
</tr>
<tr>
<td></td>
<td>2.1.2 - Expand engagement of Federal water resource agencies in regional cooperative efforts on climate science and decision-making.</td>
<td>DOI, NOAA, USDA</td>
</tr>
<tr>
<td></td>
<td>2.1.3 - Provide support to agencies to incorporate supply chain issues and water use vulnerability into adaptation plans.</td>
<td>DOD</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Develop case studies to inform restoration of wetlands to build resilience.</td>
<td>EPA, USACE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.2: Develop guidance and provide assistance to communities and water resource managers on use of climate change information and tools for assessing vulnerability and building resilience</td>
<td>2.2.1 - Develop an online dashboard to help water resource managers and urban planners prepare for and respond to extreme events.</td>
<td>NOAA</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Streamline access to climate adaptation information for the water theme of the Climate Resilience Toolkit.</td>
<td>NOAA</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Continue to develop, distribute, and provide guidance on the use of projected future climate information for water resources management.</td>
<td>NOAA</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Adopt a system for coordinating vulnerability assessments and advancing peer-to-peer learning.</td>
<td>USGS</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Evaluate policies to provide points within the FEMA Community Rating System for the development of watershed scale plans for managing flooding that consider projected climate changes.</td>
<td>FEMA</td>
</tr>
</tbody>
</table>

Team 3: Training & Outreach (Lead: NOAA)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strategic Actions</th>
<th>Lead(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1: U.S. Climate Resilience Toolkit Water Theme</td>
<td>3.1.1 - Develop learning progressions to improve the utility and accessibility of the Climate Resilience Toolkit Water Theme.</td>
<td>NOAA, EPA</td>
</tr>
<tr>
<td></td>
<td>3.1.2 - Ensure new water-related training opportunities are accessible through the Climate Resilience Toolkit.</td>
<td>NOAA, EPA</td>
</tr>
<tr>
<td></td>
<td>3.1.3 - Help build a network of technical expertise on water and climate change, available on request.</td>
<td>NOAA</td>
</tr>
<tr>
<td></td>
<td>3.1.4 - Form stakeholder partnerships to improve delivery of training on use of existing tools and to identify new training needs.</td>
<td>NOAA, EPA</td>
</tr>
<tr>
<td></td>
<td>3.1.5 - Develop a focused communication and outreach effort to expand awareness of the Toolkit offerings.</td>
<td>NOAA</td>
</tr>
</tbody>
</table>
3.2: Sustain and build upon the Climate Change and Water Working Group Professional Development Series

<table>
<thead>
<tr>
<th>3.2.1</th>
<th>Continue to add new content to the Climate Change and Water Working Group Professional Development series.</th>
<th>BuRec</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Workgroup agencies should work with the Climate Change and Water Working Group to identify gaps and develop courses to broaden offerings.</td>
<td>BuRec</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Identify ways to sustain the Climate Change and Water Working Group Professional Development Series and expand the student base.</td>
<td>BuRec</td>
</tr>
</tbody>
</table>

Team 4: Management and Coordination (Co-Leads: USEPA, USGS, CEQ)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strategic Actions</th>
<th>Lead(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1: Ensure effective support for the Workgroup to maintain continuity of interagency collaboration and leadership among Federal water resource agencies</td>
<td>4.1.1 - Rotate workgroup leadership among member agencies to provide fresh perspectives in leadership.</td>
<td>CEQ, USGS, EPA</td>
</tr>
<tr>
<td></td>
<td>4.1.2 – Strengthen staffing to support the Workgroup.</td>
<td>CEQ, USGS, EPA</td>
</tr>
</tbody>
</table>
WORKGROUP MEMBERS

Co-chairs
Council on Environmental Quality - Charles Kovatch
Environmental Protection Agency - Michael Shapiro
U.S. Geological Survey - Jerad Bales

Members

1231 Army Corps of Engineers
1232 Rachel Grandpre
1233 Kathleen White

1235 Centers for Disease Control and Prevention
1236 Joan Brunkard

1239 Department of Agriculture
1240 Forest Service
1241 Christopher Carlson
1242 David Levinson

1243 Natural Resources Conservation Service
1245 Noel Gollehon
1246 Michael Strobel

1247 Office of the Chief Economist
1248 Carolyn Olson

1250 Department of Defense
1251 Office of the Secretary of Defense
1252 Laura Montoya

1253 U.S. Army
1254 Marc Kodack

1256 Department of Energy
1257 Craig Zamuda

1261 Department of the Interior
1262 Bureau of Reclamation
1263 Levi Brekke
1264 Kenneth Nowak

1265 Dave Raff
1266 U.S. Geological Survey
1267 Julie Kiang

1269 Environmental Protection Agency
1270 Veronica Blette
1271 Karen Metchis
1272 Jeff Peterson

1274 FEMA
1275 Mark Crowell
1276 William Lesser

1277 National Aeronautics and Space Administration
1280 Bradley Doorn
1281 Jared Entin

1283 National Oceanic and Atmospheric Administration
1285 Nancy Beller-Simms
1286 Michael Brewer