Compound and Concurrent Climate
Extremes: Detection, Modeling and
Risk Analysis

Amir AghaKouchak,

University of California, Irvine

Hamed Moftakhari, Elisa Ragno, Moji Sadegh,
Felicia Chiang, Linyin Cheng, Omid Mazdiyasni,
Gianfausto Salvadori, Brett Sanders, Richard
Matthew

Email: amir.a@uci.edu

r@ : @AghaKouchak




HH‘HHHH“HHHHHHHHHHHHHHH“
YN ‘l““‘h“‘ YRy ““““4‘¢‘ Y 444‘4““‘

Surge/Tide

Past Sea Level

Coastal Flooding



&R Compound Extreme Events ) Y
:\ ?( Ted po «

4 = g %
‘3:( N \ qé”

Image Credit: NASA/JPL




HH‘HHHH“HHHHHHHHHHHHHHH“
YN ‘l““‘h“‘ YRy ““““4‘¢‘ Y 444‘4““‘

Surge/Tide

Past Sea Level

Compound Ocean-Fluvial Flooding
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(CHRS/UCI Satellite Precipitation data: http://chrsdata.eng.uci.edu/)

Louisiana 2016 Flood
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13 death; 60,000 homes damaged; 20,000 people evacuated

400

d

~144 mm/day
(433 mm over
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The Amite river crest rose to 5.3 m, 0.9
m above the 1983 record (~ 1000-yr flood).
The record flood stage was the result of
compounding effects of multiple local floods.
Several creeks and rivers across a large area in
southern Louisiana flooded simultaneously,
which led to overtopping of levees and
floodwalls.
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Compound Extreme Events

Two or more extreme events occurring simultaneously or
successively

Combinations of extreme events with underlying conditions
that amplify the impact of the events

Combinations of events that are not themselves extremes
but lead to an extreme event or impact when combined.

Consecutive inter-dependent events that do not occur at the
same time, but they have compounding impacts.
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Zscheischler J., et al., Nature Climate Change, 8 (6), 469-477, doi: 10.1038/s41558-018-0156-3.
https://www.nature.com/articles/s41558-018-0156-3




Key Research Gaps - Compound Extreme Events

Research Gaps:

Lack of theoretical frameworks for, change detection,

frequency analysis and risk assessment of compound extremes.

* Detecting changesin frequency and distribution of compound
extremes (drought-heatwaves and Ocean-Terrestrial
Flooding)

* Multivariate frequency analysis and risk assessment

Understanding and modeling the changing nature of human

activities and their interactions with compound events.

 Compounding effects of different climate change and human
water use scenarios
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Moftakhari H.M., Salvadori G., AghaKouchak A., Sanders, B.F., Matthew, R.A., 2017, Compounding Effects of Sea Level
Rise and Fluvial Flooding, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1620325114.



Failure Probability

For a given design life time of T the failure probability (P) is calculated as
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i) Ilustration of the univariate and
bivariate Hazard Scenarios. The black
circles represent observed bivariate
is the
reference occurrence z* = (x*,y*),
the red line is the isoline of Fyy
crossing z*, with level Fyy (x*,y*) <
min{Fy(x*),F,(y*)}, and the black
line is the isoline of Fyy crossing z%,

occurrences, the red circle

under the simplifying assumption of

independence between Fluvial Flow
WL. The
regions A, B, and C are indicated as

and Coastal hazardous
dashed areas. The estimates of the
bivariate OR RP's associated with the
occurrence z* are indicated in the
legends for Philadelphia, PA (Figure
1ii), San Francisco, CA (Figure 1iii), and

Washington, DC (Figure 1iv).



Failure Probability

Compound Extreme Events - Failure Probability 2030 RCP4.5
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Estimated failure probability for a temporal horizon of 30 years. The solid black and red curves show,
respectively, the estimated failure probability computed based on the univariate and bivariate OR hazard
scenarios, according to the presently observed climate conditions. The solid and dashed purple curves
show the estimated probability of failure using a bivariate OR approach and an associated 95%
confidence band considering the projected SLR for 2030 under RCP 4.5.



Source: https://swot.jpl.nasa.gov/

High resolution products
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The Surface Water Ocean Topography (SWOT) mission, planned for launch in 2021, will collect
high-frequency data for mapping the world’s water elevations using radar interferometry.
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Drought and Heatwaves
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Droughts and Heatwaves
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MazdiyasniO., AghaKouchak A., 2015, Substantial Increase in Concurrent Droughts and Heatwavesin the United States,
Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1422945112.
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Droughts and Heatwaves
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Compound Extreme Events
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AghaKouchak A., Cheng L., Mazdiyasni O., Farahmand A., 2014, Global Warming and Changes in Risk of Concurrent Climate Extremes: Insights

from the 2014 California Drought, Geophysical Research Letters, doi: 10.1002/2014GL062308.



2014 California Drought: How Bad is It?

California November-April Mean Precipitation
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2014 California Drought: How Bad is It?
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Assuming two variables X  (precipitation) and Y
(temperature) with cumulative distribution functions
Fy (x) =Pr(X < x) and F, (y) = Pr(Y < y), the copula (C)
can be used to obtain their joint distribution function:
F(x,y) = C(FX(x),FY (y)), where F(x,y) is the joint
distribution function of X and Y:

F(x,y) =Pr(X<x,Y<y)

The joint survival distribution F(x,y) =Pr(X > x,Y >y)
can be obtained using the concept of survival copula:
Floy) =C(F (0, F0)

Fy and F, (i.e.,Fy =1—-F, F, =1—F,) arethe
marginal survival functions of X and Y, and C is the
survival copula.

Survival critical layer (or isoline) is then defined as:

LF = {x,y € R% F(x,y) = t} where L[ is the survival
critical layer associated with the probability ¢.

Temperature Anomaly (°C)
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The survival return period of X and Y is defined as: Ky, = where Kyy is called the survival Kendall’s return period;

1-R(t)
u > 0 isthe average interarrival time of X and Y (1 = 1 indicates the average interarrival time between subsequent values
in the time series is one year); and K is the Kendall’s survival function associated with F defined as:

K@) =Pr(F(X,Y) = t) = Pr(C(Fx(x),F,(y)) =1t)

For any return period T, the corresponding survival critical layer Lt’? can be estimated by inverting the Kendall’s survival
function K(t) atthe probability levelp =1 — %z g =q(p) =K 1(p),



Hot Droughts
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Regional boxplots display the temperature shifts corresponding to the average

climate and different drought severity levels based on ground-based observations
[1965-2014 relative to 1902-1951]

Chiang F., AghaKouchak, A, et al., 2018, in press.



Hot Droughts
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Regional boxplots display the temperature shifts corresponding to the average
climate and different drought severity levels based on ground-based observations
[1965-2014 relative to 1902-1951]

Chiang F., AghaKouchak, A, et al., 2018, in press.



MvCAT is freely
available here:

Multivariate Copula Analysis
Toolbox (MvCAT)

http://amir.eng.uci.
edu/software.php
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Corrected: Author Correction

Future climate risk from compound events

Jakob Zscheischler ®'™, Seth Westra?, Bart J. J. M. van den Hurk®34, Sonia |. Seneviratne®],
Philip J. Ward ©4, Andy Pitman®, Amir AghaKouchak ©¢, David N. Bresch’®, Michael Leonard?,
Thomas Wahl® and Xuebin Zhang™

Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple
spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is
referred to as a ‘compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at
a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spa-
tially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections
of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact mod-
ellers and decision-makers, who need to work closely together to understand these complex events.

Zscheischler J., Westra S., van den Hurk B.J.J.M. , Seneviratne S.l., Ward P.J., Pitman A.,
AghaKouchak A., Bresch D.N., Leonard M., Wahl T.,, Zhang X., 2018, Future Climate Risk from
Compound Events, Nature Climate Change, 8 (6), 469-477, doi: 10.1038/s41558-018-0156-3.

https://www.nature.com/articles/s41558-018-0156-3
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