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Executive Summary

For the past 33 years, Bulletin 17B has guided flood-frequency analyses

in the United States. During this period much has been learned about

both hydrology and statistical methods. In keeping with the tradition of

periodically updating the Bulletin 17B Guidelines in light of advances in

our understanding and methods, the Hydrologic Frequency Analysis Work

Group (HFAWG) was charged by the Subcommittee on Hydrology (SOH)

of the Advisory Committee on Water Information (ACWI) to consider

possible updates to Bulletin 17B.

The purpose of this report is to consider the statistical performance

of possible revisions to Bulletin 17B procedures. Of particular interest

are procedures designed to accommodate more general forms of flood in-

formation. The concern is how the proposed procedures would affect the

precision, accuracy and robustness of flood-frequency estimates.

The investigations reported here focus on techniques for:

• Incorporating information related to historical flooding that occurred

outside the period of systematic streamgaging;

• Identification of potentially influential low floods (PILFs); and

• Accurate characterization of the uncertainty in flood quantile esti-

mators.

The proposed changes are relatively modest, at least in the sense that

they would not affect the main features of Bulletin 17B. The proposed

methods include:

• Continued use of the log-Pearson Type III (LP3) distribution;

• Continued use of the Method-of-Moments fitting method applied to

the logarithms of annual-peak-flow data; and

• Identification of low outliers and PILFs using a generalized Grubbs-

Beck-type criterion that is sensitive to multiple potentially influen-
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tial low flow (“PILF”; such low flows were previously denoted “low

outliers”).

The hydrological literature already provides extensive support for the

theory behind the proposed changes. The remaining question is practical:

How well do the proposed methods perform under typical and realistic

conditions and specifically with difficult records occasionally encountered

in practice?

In order to answer these questions, the HFAWG commissioned the

work reported here. Four major sets of results are provided:

• Monte Carlo simulations of fitting procedures employing data drawn

from simulated LP3 populations;

• Monte Carlo simulations of fitting procedures employing data drawn

from non-LP3 populations that were selected to reflect likely devia-

tions of flood series, based on the experience of HFAWG members,

from LP3 distributions;

• A direct comparison of the fitted LP3 distributions for 82 real “test

sites” identified by an independent Data Group as both “typical”

and “challenging” for flood frequency estimation; and

• Simulations of fitting procedures using records obtained by resam-

pling with replacement from the longest of the 82 test-site records.

Collectively these studies provide a reasonably comprehensive, valid and

robust assessment of the properties of the Bulletin 17B methods and pro-

posed alternatives.

The experiments and analysis indicate that the flood quantile estima-

tors proposed as a revision of Bulletin 17B:

• Perform generally as well as, and in some cases much better than,

Bulletin 17B estimators in terms of the Mean Square Error (MSE)

of flood quantiles estimates;
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• Allow for incorporation and efficient statistical treatment of broader

classes of flood-frequency data and information, including historical

information, binomial data and interval data; and

• Generally confirm studies and the theoretical findings reported in the

hydrological literature that would support use of updated estimation

procedures that have been developed since 1982 when Bulletin 17B

was published.
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1 Introduction

Flooding is the costliest natural hazard facing the United States in terms of

loss of both life and property (Mileti, 1999; ACWI, 2011). While policy makers

and planners have an array of tools to reduce flood losses through structural

and non-structural mitigation, doing so in practice requires a quantitative, uni-

form and consistent approach for estimating flood risk (Tasker and Thomas,

1978; Thomas, 1985; Griffis and Stedinger, 2007). Recognizing this, the federal

government has developed standard guidelines for performing flood-frequency

analyses, and published these guidelines in a document known as “Bulletin 17B”

(IACWD, 1982). The methods defined in Bulletin 17B inform literally millions

of decisions about land use and construction, emergency response and recovery,

and countless other governmental and private-sector activities in the United

States. The practical value of federal guidelines is not in dispute.

Nonetheless Bulletin 17B (IACWD, 1982, “B17B”) has its limitations. The

document itself recognized that additional work was needed to improve some

of its procedures (IACWD, 1982, p. 27, “Future Studies”). In light of ad-

ditional research conducted to address these concerns, both researchers and

practicing hydrologists have recently called for updates to the B17B Guidelines.

The purpose of this report is to evaluate some proposed modifications to the

flood-frequency methods specified in Bulletin 17B.

In November of 2005, the HFAWG proposed the following (ACWI, 2011, minutes

from February 2005 HFAWG meeting):

Based on recently completed research, the HFAWG proposes to

investigate the following possible improvements in Bulletin 17B:

1. Evaluate and compare the performance of the Expected Mo-

ments Algorithm (EMA) (Cohn et al., 1997) to the weighted-

moments approach of Bulletin 17B (Appendix 6) for analyzing
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data sets with historic information and paleoflood data.

• Apply EMA and Bulletin 17B to gaging station data that

include low and high outliers (PILFs) and historic data and

those that do not. Develop criteria for determining if EMA

provides more accurate and consistent flood estimates.

• Review and evaluate the published literature for compar-

isons of EMA to conventional Bulletin 17B procedures.

• Recommend improved plotting position formula when his-

toric data are available.

2. Evaluate and compare the performance of EMA to the con-

ditional probability adjustment of Bulletin 17B for analyzing

data sets with low outliers and zero flows (PILFs).

• Apply EMA and Bulletin 17B to gaging station data that

include low and high outliers and historic data and those

that do not (same data set as noted above). Develop cri-

teria for determining if EMA provides more accurate and

consistent flood estimates.

3. Describe improved procedures for estimating generalized/regional

skew.

• Evaluate revisions needed in Bulletin 17B to describe im-

proved procedures for estimating generalized/regional skew

based on recently completed research.

4. Describe improved procedures for defining confidence limits.

• Evaluate revisions needed in Bulletin 17B to describe new

procedures for defining confidence limits that include the

uncertainty in the skew coefficient.
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• Describe confidence limit procedures for EMA (if adopted).

This report presents the results of analyses that address items 1 and 2. Advances

in regional skew analyses have been describes in a series of USGS reports La-

montagne et al. (2012); Veilleux and Stedinger (2010); Veilleux et al. (2012).

Confidence interval issues have been discussed in (Cohn et al., 2001) (also see

Cohn et al. (2013)) and earlier in Chowdhury and Stedinger (1991). More recent

improvements in computational algorithms for computing confidence intervals

based on EMA flood frequency analyses will be the topic of a future publication.
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2 Literature Sources: The History of Flooding

and Flood Risk Estimation

Bulletin 17B (IACWD, 1982) defines the current method for conducting peak-

flow frequency analyses in the U.S. It descends from a series of studies and

guidelines beginning with Bulletins 13 (ICOWR, 1966), 15 (USWRC, 1967), 17

(USWRC, 1976), and 17A (USWRC, 1977). Each of these includes a list of

relevant citations.

The history of the Bulletins and a discussion of the methods recommended in

the current Bulletin 17B appears in Thomas (1985), Stedinger et al. (1993) and

Griffis and Stedinger (2007). There is also a vast literature on methods for

flood-frequency estimation, and the references provided here are intended to

provide pointers to the larger literature. In particular, additional citations are

available from Stedinger et al. (1993) and Griffis and Stedinger (2007). Amer-

ican Institutes for Research (AIR, 2001) provides a comprehensive chronology

of the history of flood risk estimation as well as an extensive bibliography of

the flood-frequency literature prior to 2000. Stedinger et al. (1993) provides a

bibliography of statistical techniques employed in flood frequency analyses.
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3 Metrics for Evaluating Flood-Frequency Esti-

mators

In practice, the benefits of more accurate flood information depend on many

factors that are site-specific. In particular, benefits depend on the physical,

geological, social, and other characteristics of the site. The benefits also depend

on the decisions to be made and a host of other factors. However, in trying to

assess the performance of flood-risk estimation techniques, one typically simpli-

fies the problem by considering a small number of generally accepted criteria

that are believed to characterize adequately an estimator’s performance.

The criteria employed in this study can be divided into several groups:

• Operational

1. Ease of Application Methods should be relatively easy to implement;

2. Applicability to Available Data Methods should be able to make effi-

cient use of the data types available for flood investigations;

3. Consistency of Application Frequency estimates should be transpar-

ent and fully reproducible using supplied software and by hand;

4. Uniformity of Methods Where possible, standardized methods should

be used to ensure that different people performing the same analysis

will obtain the same risk estimates.

• Statistical

1. Bias On average, risk estimates should approximately equal the true

risk; as more information becomes available, risk estimates should

converge to the true risk;

2. Efficiency Estimators should extract as much information from the
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data as possible so as to minimize the mean square error of estimated

statistis;

3. Quantified uncertainty Estimates should be accompanied by quanti-

tative assessments of their uncertainty;

• Political, Legal and Institutional Criteria Standard methods should be

consistent, uniform, and easily explained. They should satisfy legal re-

quirements, and should serve institutional requirements of the federal gov-

ernment and its National Flood Insurance Program, among others.

A small set of quantitative metrics are employed in this report to quantify the

differences among different parameter estimation procedures.

BIAS The expected difference between the estimate and true value of the pa-

rameter of interest.

MSE Mean Square Error (MSE) is defined as the expected squared difference

between the estimate and true value of the parameter of interest. This is

sometimes expressed as the sum of the variance plus the bias squared.

ERL The efficiency of estimators that employ historical flood information is

quantified in terms of Effective Record Length (ERL), the amount of

equivalent systematic record that, by itself, would provide the precision

achieved with the combination of both systematic and historical informa-

tion.

AG A more general measure of estimator efficiency is the Average Gain (AG),

which expresses the benefit of each year of historical information in terms

of the information in a year of systematic data.

RPD The Relative Percent Difference (RPD) statistic is used to quantify differ-

ences among estimators.
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Taken as a whole, these metrics provide the quantitative foundation for charac-

terizing the performance of Bulletin 17B and proposed alternatives.

17



4 Estimation

For most of this study, flood quantile estimates were computed using two pa-

rameter estimation methods (B17B and EMA) and two outlier identification

procedures (Grubbs-Beck (GB) and Multiple Grubbs-Beck (MGB)). Section 4.2

discusses the motivation of the GB outlier identification procedure in Bulletin

17B and of a proposed replacement, MGB. The characteristics of the MGB

method are discussed in section 4.3. Section 4.5 provides a discussion of the

conditional probability adjustment (CPA) used by Bulletin 17B and the pro-

posed EMA approach to analyze records containing zero flows, “low outliers,”

and other events described as being less than a specified threshold. Section 4.6

discusses three specific combinations of parameter estimators and outlier identi-

fication procedures considered in this report. Section 4.7 identifies the software

used in the studies.

4.1 Parameter Estimation

Bulletin 17B (IACWD, 1982) recommends use of the method of moments to

estimate the first three sample moments, although a number of additional pro-

cedures are employed for dealing with special situations. All of the procedures

are documented in the Bulletin, and additional information on the procedures

is found in Thomas (1985), Stedinger et al. (1993) and Griffis and Stedinger

(2007).

The Expected Moments Algorithm (EMA) is a straightforward generalization

of the method of moments that is designed to accommodate both the point

data envisioned in IACWD (1982) as well as various forms of non-standard

interval data. The details of EMA are discussed in Cohn et al. (1997), Cohn

et al. (2001) and Griffis et al. (2004b). At most sites across the United States,

where only systematic annual peak flow (APF) data are currently available, the
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B17B and EMA frequency estimates are essentially identical. However, where

non-standard data are present, the two estimates will differ. In some cases the

differences can be substantial (see Section 6).

4.2 Identification of Outliers and Potentially Influential

Low Flows

Among the proposed improvements to Bulletin 17B is a new multiple Grubbs-

Beck (MGB) low-outlier test. MGB is a natural generalization of the Bulletin

17B Grubbs-Beck test, and addresses item 3 in the Bulletin 17B list of needed

future work (IACWD, 1982): “The treatment of outliers both as to identification

and computational procedures.”

Low outlier identification and treatment are important issues in flood frequency

analysis guidelines because unusually small observations, which often result from

physical processes that are of little relevance to the estimation of large floods,

can have a large influence on the estimates of extreme flood quantiles. In arid

regions, for example, channel losses often result in annual flood peaks that

are zero. As a result, an LP3 distribution cannot fit the entire flood record.

Moreover, samples from an LP3 distribution with substantial negative log-space

skew (γ ≤ −0.5) typically contain so-called “low outliers,” and, using log-space

moments, those unusually small values have undue influence and can result in

poor estimates of the large flood quantiles of interest in flood risk management.

Unusually small values are therefore a real concern because it is imperative that

the estimators defined in a Bulletin 17C, in addition to being efficient, possess

the characteristic of robustness – meaning that they perform reasonably well

even when underlying assumptions are violated.

Robustness is sometimes achieved in statistical analyses through explicit adap-

tation: The analyst looks for problems and then addresses the critical issues.

19



In frequency analyses, for example, one often uses a probability plot to examine

if sample data are consistent with a fitted curve (Stedinger et al., 1993). The

authors of Bulletin 17B dealt with the robustness issue by explicitly identifying

low outliers that “depart significantly from the trend of the remaining data.”

They note that “The retention, modification and deletion of these outliers can

significantly affect the statistical parameters computed from the data.” Thus

the authors of the Bulletin 17B explicitly recognized that we do not want small

flood values distorting the model that describes the distribution of large floods

(the “trend of the remaining data”). They explicitly note that failure to address

this issue would “significantly affect the [computed] statistical parameters.”

Barnett and Lewis (1994, pp. 7-9) discuss this idea of using outlier tests to

identify unusual observations that otherwise might have undue influence in an

analysis. Low-outlier identification tests provide an objective method for identi-

fying outliers, ensuring that different hydrologists analyzing the same data will

arrive at the same conclusions.

The purpose of using the Bulletin 17B GB test, and the MGB extension consid-

ered here, is to identify Potentially Influential Low Floods, or PILFs. PILFs are

not always the same as “low outliers,” though they have much in common. The

defining characteristic of PILFs is that they potentially have a large influence

on the upper tail of the fitted frequency curve. For example, when data sets

are highly negatively skewed, the smallest observations can be very influential

in determining the estimated skewness coefficient, and as a result the estimated

value of the 1%-exceedance probability (100-year flood). In order to provide a

robust and objective procedure, Bulletin 17B employs the Grubbs-Beck (GB)

test to identify low outliers.
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4.3 The MGB Test Algorithm for Identifying PILFs

The Bulletin 17B Grubbs-Beck (GB) test provides an objective and defensible

recommendation as to which values should be treated as outliers, in the termi-

nology employed in that report. However, the Bulletin 17B GB test is based

solely on the distribution of the single smallest observation in a sample. As a

result, even though multiple low outliers in flood data are common, the GB test

rarely identifies more than a single low outlier (Lamontagne et al., 2013). To

provide an objective criterion for multiple low outlier identification, a multiple

Grubbs-Beck test (MGB) was developed that employs the actual distribution of

the ith largest observation in a sample of n independent normal variates (Cohn

et al., 2013).

The Cohn et al. (2013) computation provides the probability p(i ;n) that the ith

largest observation in a normal sample of size n might be smaller than the value

observed. If p(i ;n) is small, then the ith observation is unusually small. When

considering the probability associated with the ith smallest observation in a

sample, the MBG test uses a generalized Grubbs-Beck statistic. All values equal

to and less than the ith smallest observation are excluded from the computation

of the pseudo-mean and standard deviation that are used to standardize the

ith observation. Rosner (1975) explains the advantages of that generalization of

the Grubbs-Beck statistic and provides a two-sided multiple outlier test. The

specialized test adopted here considers only low outliers. Spencer and McCuen

(1996) and McCuen (2002) also discuss outlier tests based upon a generalized

Grubbs-Beck statistic.

The procedure for actually identifying Potentially Influential Low Floods (PILFs)

has two steps:

1. Starting at the median and sweeping outward towards the smallest obser-

vation, each observation is tested and is identified as an outlier if p(i ;n)
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≤ 0.5%. If the kth largest observation is identified as a low outlier, the

outward sweep stops and the kth and all smaller observations (i.e. for all

i ≤ k) are also identified as low outliers.

2. Then, as with the current Grubbs-Beck procedure in Bulletin 17B, an

inward sweep starts at the smallest observation and moves towards the

median, where the ith observation is identified as an outlier if p(i ;n) ≤

10%. If an observation m ≥ 1 fails to be identified as an outlier by the

inward sweep, the inward sweep stops.

The number of low-outliers identified by the procedure is then the larger of k

and m− 1.

Bulletin 17B also used a 10% significance test with its single inward sweep.

However, a critical difference is that the new inward sweep uses the p(i ;n) func-

tion which correctly describes whether the ith largest observation in a sample of

n normal variates is unusual. Here, the first outward sweep seeks to determine if

there is some break in the lower half of the data that would suggest the sample

is best treated as if it had a number of low outliers. The second sweep using

a less severe significance level, p(i ;n) ≤ 10%, mimics Bulletin 17B’s willingness

to identify one or more of the smallest observations as low outliers so that the

analysis is more robust.

If a record has, for example, 5 zero flows, then the smallest non-zero flow is

considered to be the 6th smallest observation in the record. This correctly

reflects the fact that the flood record included 5 smaller values. The GB test

in Bulletin 17B includes no mechanism for correcting its threshold when testing

the smallest non-zero flood value in a record containing one or more zeros, or

below-threshold discharges at sites with crest-stage gages. This is particularly

problematic because sites with zero flows are likely to include one or more small

or near-zero flood values which should be identified as low outliers. The MGB
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test solves this problem.

4.4 Would Identification of Fewer PILFs Yield Better Fits?

The MGBT was defined to search for PILFs – potentially influential low flows –

in the bottom 50% of the sample. Citing various reasons, practicing hydrologists

have expressed concern about declaring half of a sample to be“low outliers”

or PILFs. In part, this concern reflects concern about the number of “low

outliers,”which should not be a primary concern because the goal is to achieve

robustness in estimating large floods, not to utilize as many point observations

as possible.

In any case, one can determine the consequence of limiting the number of iden-

tified PILFs to, for example, one quarter of the sample rather than half. This

question is addressed here through consideration of the 82 test sites. One imme-

diate observation is that the question is relevant to only a handful of cases; the

MGB test identifies fewer than 25% PILFs at 69 of the 82 test sites. Because

the constraint is not binding at these sites, the results at these sites are not

affected by limiting the number of PILFs to 25%.

Table 1 reports the impact of imposing a 25% limit at the remaining 13 test

sites. At these sites, limiting the number of PILFs to 25% of the sample will

affect estimates of the 1% exceedance event, which appears in the right-most

column. The changes ranged from −20% to +58% with a median difference of

+6% and average increase of +9%.

On average, use of the lower quartile resulted in a modest increase in the 100-

year flood estimate. The question then becomes essentially subjective: Are the

fitted frequency curves “better” with the 25% limit or the 50% limit? In the

three cases where the absolute value of the change exceeded 20%, the 100-year

flood increased by 22%, 30% and 50%. If the MGBT has been censoring too
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Table 1: Impact of restricting search for PILFs to bottom quartile of sam-
ple at the 13 sites where more than 25% of the observations had been identi-
fied as PILFs using the standard Multiple Grubbs-Beck test. The change in
the 1%-exceedance event appears in the right-most column, and ranged from
−20%(0.20) to +58%(0.58), with a median increase of +6% and average increase
of +9%. Here Q̂0.01,[50], N[50] refer to the estimated 1%-exceedance flood with

the 50% limit and the corresponding number of identified PILFs; Q̂0.01,[25] and
N[25] refer to the corresponding statistics for the 25% limit.

Site USGS ID Q̂0.01,[50] N[50] Q̂0.01,[25] N[25] (
Q0.01,[25]−Q0.01,[50]

Q0.01,[50]
)

17 03345500 49700 34 54100 1 0.09
23 05291000 16000 29 12800 20 -0.20
37 07138600 1110 12 983 5 -0.12
41 08133500 26800 23 34900 0 0.30
45 08171000 113000 27 110000 19 -0.02
50 09241000 4810 22 4550 17 -0.05
56 10234500 1110 45 1360 0 0.22
58 11152000 30800 46 32100 18 0.04
59 11176000 2440 19 3860 1 0.58
61 11274500 13600 29 14500 19 0.06
63 11464500 21600 15 25400 5 0.18
65 12039500 50400 47 56500 0 0.12
73 13302500 18000 42 18500 16 0.03
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heavily, we would expect to see no consistent increase or decrease from censoring

less. To see an average increase of 9%, with such consistently positive increases

when large differences occur, suggests that censoring only below the lower quar-

tile leads to admitting small peaks that unduly affect the 1%-exceedance flood

estimate.

Visual examination of the plots for these three cases strongly suggests that the

algorithm that started its search at the median made reasonable decisions, as

can be seen in the figures:

08133500 Note the sharp break in the data just above the lower quartile that MGBT[50]

catches and MGBT[25] does not (Figure 75).

11176000 Note a weak break in the data just about the lower quartile. Using the

MGBT[50] identifies this discontinuity and results in a fit that is much

more consistent with the 8 largest observations. B17B/GB with one outlier

seems to overestimate the 1%-exceedance flood when compared with the

data (Figure 102).

10234500 Note kink visible just below the median which MGBT[50] identifies, with

the result that the MGBT recommends censoring almost half the data.

Given the shape of the data, that seems reasonable. Which approach

provided the best fit? With the more extreme censoring, less weight is

placed on the smallest observations and the B17B/MGB and EMA/MGB

fits are much more consistent with the 7 largest observations in the sample.

In short, the MGB as defined seems to achieve the goal of matching the

trend in the largest observations (Figure 80).

In 10 of 13 cases the differences were small. In three cases the differences were

greater than 20% and all were positive. In at least two of the three cases, better

fits were obtained with the more aggressive censoring, and it is arguable that
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this is the case in all three. Thus MGBT[50] is arguably a good choice for

identifying potentially influential low flows.

4.5 Treatment of Flows Identified as Outliers: CPA and

EMA

The logarithm of zero is minus infinity, so zero flows cannot be employed in a

standard method-of-moments fit using the logarithms of the floods. Moreover,

section 6 describes two other situations that need to be considered: small flood

values that are true outliers in the traditional sense; and potentially influential

low floods (PILFs). As discussed here, the two estimation methods, B17B and

EMA, deal with zeros and low outliers in different ways.

To deal with such low outliers, Bulletin 17B employs the Conditional Probability

Adjustment (CPA) developed by Jennings and Benson (1969). If the r smallest

flows in a record of length n are identified as outliers less than some threshold

qT , then the CPA fits a P3 distribution to the logarithms of the retained (n −

r) large values. Then for any large flood value q > qT , its non-exceedance

probability is estimated as r/n plus (1−r/n) times the probability it would not

be exceeded given the distribution fit to the (n−r) retained observations. Then

for convenience and computation of confidence intervals, the 50, 90, and 99

percentiles of that “probability-adjusted” distribution are computed and used

to compute the three parameters of a “synthetic” LP3 distribution that is used

to represent flood risk at the site. This procedure is relatively robust, and has

been shown to work well with zeros and low outliers Griffis et al. (2004b).

EMA uses ranges and thresholds to describe historical flood information, floods

measured with limited precision, and PILFs. In particular, PILFs can be repre-

sented as being less than the smallest retained observation when the LP3 distri-

bution parameters are estimated. This allows EMA to address a large range of
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circumstances, while appropriately representing all of the available information.

Censoring several of the smallest observations in a sample results in almost no

decrease of precision in flood quantile estimates with EMA or with CPA (Griffis

et al., 2004b). However, EMA can be much more sensitive than CPA to low

outliers that are not afforded special treatment. Suppose a record had three low

outliers, and we identified two. Then using CPA, the value of the smallest two

observations are completely ignored, and the frequency-adjustment (CPA) cor-

rects for omitting two observation in the curve fitting step. Thus 66.7% of the

low outliers have been dropped, greatly reducing their impact. With EMA, if

there are 3 low outliers and two are identified, EMA represents the two smallest

outliers as being less than the third. If the third outlier is substantially smaller

than one would expect for the third largest observation, then describing the two

smaller observations as being less than this third value can be worse than using

their original values. Consider for example the Sacramento River 1-day flood

record discussed in Cohn et al. (2013, Figure 3) (reproduced here as 1), which

has three small values, all of which are a factor of two smaller than the other

observations. Because EMA in some sense takes the data seriously, one needs

to identify all of the PILFs to reliably avoid potential problems. GB frequently

fails to identify obvious outliers, other than the smallest flow.

Given the well understood sensitivity of the EMA method to low outliers, no

EMA/GB combination is considered in this report. EMA does not perform

reliably when paired with GB. As will be shown, the MGB outlier criterion

identifies obvious outliers and PILFs in the lower half of troublesome data sets.

As a result, as will be shown here, both B17B and EMA when used with the

MGB outlier identification procedure are reliable flood-quantile estimators in

terms of their ability to avoid problems caused by unusually small peaks.
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Figure 1: One-Day Peak Flows from 1932-2008 Measured at Sacramento River
at Shasta Dam (Cohn et al., 2013, Figure 3)
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4.6 Estimation Methods Considered in this Report

Bulletin 17B (IACWD, 1982) procedures include a Grubbs-Beck (GB) outlier

identification procedure, a weighted moment computation if a historical record

period is included with a perception threshold that was exceeded at least once,

use of a conditional probability adjustment (CPA) if a record contains zero flows,

low outliers, or peaks below gage-base, and finally computation of a weighted

skewness coefficient ((Griffis and Stedinger, 2007, figure 2); (IACWD, 1982,

pages 12-2 through 12-3)). All four of those steps, as needed, are components

of the flood frequency method denoted here as B17B.

The proposal under consideration is to replace those procedures with the mul-

tiple Grubbs-Beck (MGB) test for identification of low outliers and potentially

influential observations (Cohn et al., 2013), and the Expected Moments Al-

gorithm (EMA) for the estimation of the parameters of an LP3 distribution

simultaneously considering zeros and low outliers as censored data, one or more

periods with different perception thresholds for historical floods, and a regional

skewness coefficient with specified mean square error (Cohn et al., 1997; Griffis

et al., 2004b). An advantage of the EMA approach is that all of the data is

treated consistently in a single parameter estimation step, rather than as a se-

quence of procedures that first address historical information, then zeros and

low outliers, and finally regional skew information (or the opposite ordering of

low outlier and historical adjustments when the skew coefficient is less than

−0.4). Uncertainty analysis of the B17B sequence of steps is more difficult than

that of the unified EMA procedure, and EMA because it allows simultaneous

use of all of the data, is likely to be more statistically consistent and efficient.

For example, an informative regional skew should be used to inform the inter-

pretation of historical and interval information, rather than being introduced

as a separate and independent final adjustment of just the skewness coefficient
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as recommended by Bulletin 17B. The EMA algorithm also allows for differ-

ent thresholds to describe historical information from different periods as often

occurs, and the use of interval estimates of flood peaks to represent measure-

ment uncertainty, which is often appropriate when representing the magnitude

of historical flood information.

The studies that follow consider three estimation combinations:

1. EMA (Cohn et al., 1997) with a generalized multiple Grubbs-Beck test

(MGB) (Cohn et al., 2013) for detecting multiple potentially influential

low outliers in a flood series (EMA/MGB);

2. B17B (IACWD, 1982) with the standard Grubbs-Beck (GB) method for

identifying low outliers followed by the conditional probability adjustment

(CPA) to address zeros, flows identified as low outliers, and peaks below

gage-base (B17B/GB); and

3. B17B where the new MGB was employed to identify multiple potentially

influential low floods followed by the conditional probability adjustment

(CPA) (IACWD, 1982) to address zeros, flows identified as low outliers,

and peaks below gage-base (denoted B17B/MGB).

4.7 Software

The USGS PEAKFQ version 7.0 program was used to create the comparisons

between B17B and EMA estimates. PeakfqSA version 0.995, a development

version of PEAKFQ written by Tim Cohn, was used to check the EMA results

generated in PEAKFQ 7.0.

The Monte Carlo and resampling results reported in section 5 are based on the

underlying code employed in PEAKFQ, with analysis routines prepared by Tim

Cohn employing a front-end “driver” routine developed by Jery Stedinger called

“monte.f”
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Results based on the Bulletin 17B Guidelines are referred to as “B17B” or

PEAKFQ/B17B. Results based on the proposed EMA methods are denoted

“EMA” or PeakfqSA. Additional letters are appended, yielding names like

“B17B/GB,” “B17B/MGB,” and “EMA/MGB,” to specify explicitly which low-

outlier test procedure was employed.
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5 Comparisons of Methods

Hundreds of distinct Monte Carlo and resampling experiments were conducted,

each involving 10000 replicate samples, in order to determine how well the

B17B/GB, B17B/MGB, and EMA/MGB estimators satisfy the criteria listed

in section 3. These Monte Carlo experiments are described in this chapter.

5.1 Understanding the Graphical Presentation of Results

In order to simplify the discussion, comparisons between estimators for cases

with different historical information are presented concisely using a consistent

graphical format. Each figure considers the performance of the estimators when

data are drawn from a specific single population. Figure 2, for example, corre-

sponds to an LP3 distribution with a log-skew γ = 0.0; Later graphs consider

estimator performance when data are drawn from other populations.

Each graphic has two parts. The top panel contains 12 boxplots (Tukey, 1977),

divided into four groups of three, showing the distribution of three estimators

for Q1%, the 1%-exceedance event. The central colored rectangle spans the 25th

to 75th percentiles of the estimators’ distributions. The central line indicates

the median. Additional information about the distribution of the estimations

is shown by the whiskers and hinges. Observations beyond the whiskers are

plotted as individual circles. For those cases where the population mean is

known, an additional symbol is present on each box, a circle with a cross, which

indicates the location of the mean.

The three estimators are defined below and in IACWD (1982), Cohn et al.

(1997), Griffis et al. (2004a) and Cohn et al. (2013). Although flood quantiles

other than the 1% exceedance were investigated, the results were found to be

insensitive to which quantile was considered. Because Q1% is the flood of interest

for many federal activities, this case is reported.
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Each of the four groups corresponds to NS = 40 years of systematic data and

a NH = 100 year historical period during which, in expectation, 0, 1, 2 or 10,

respectively, historic floods would have been recorded. The red dashed line

indicates the true value of Q1%, where it is known; in some later plots, where

Q1% is estimated by interpolation between real observations, a purple line is

used to indicate an estimate of Q1% because the true value of Q1% is unknown.

The points appearing in the lower panel in each graph indicates the effective

record length (ERL) of each estimator. ERL is defined in this case, where

NS = 40 and NH = 100, as the ratio:

ERL ≡ NS{
MSE[log(Q̂1%(NS = 40, NH = 0))]

MSE[log(Q̂1%(NS = 40, NH = 100))]
} (1)

whereNS is the length of the systematic record, NH is the length of the historical

period, and

MSE[log(Q̂1%(NS , NH))] ≡ (Bias[log(Q̂1%(NS , NH))])2 +

Var[log(Q̂1%(NS , NH))] (2)

ERL expresses, in a rough way, how well an estimator exploits historical in-

formation by expressing its effect in terms of an equivalent number of years of

exclusively systematic data. Note that the estimator variance, denoted textV ar

in equations 1 and 2, is simply the variance of the 10000 replicate estimates of

Q̂1%. The Bias, however, is not always so easily defined. Where the flood distri-

bution is known, the Bias is defined in the conventional manner as the average

difference between Q̂1% and the true mean. When dealing with real data (e.g.

in section 6), however, the true value Q1% is not known. In these cases, for want

of a better assumption, Bias is assumed to be zero for all estimators. Thus, the

ERL is computed using only the estimated variance.
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The bottom left-most box contains three numbers in lavender. These are, re-

spectively, the fraction of observations identified as low outliers by the Grubbs-

Beck test with Bulletin 17B (B17B/GB), the multiple Grubbs-Beck test with

Bulletin 17B (B17B/MGB), and the multiple Grubbs-Beck test with EMA

(B17B/MGB). The number of low outliers with B17B/MGB and EMA/MGB

are in fact always identical because the tests do not depend on the fitting pro-

cedure.

The triplets of black numbers in the three boxes to the right indicate the average

gain (AG), in percent, associated with each year of historical flood information,

for B17B/GB, B17B/MGB and EMA/MGB, respectively. The AG quantifies

the relative value of an additional year of historical information to an additional

year of systematic gage record, and is defined as:

AG ≡ 100(
ERL−NS

NH
) (3)

AG is the percentage increase of ERL for each year in the historical period.

Where the expected number of historic floods is high – on the right side of the

graph – the AG is typically also high. Where no historic floods can be expected

– the group on the left – the average gain is zero. 1.

1Note: AG results are based on 10000 replicate samples, and have a corresponding uncer-
tainty of about 1%
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5.2 Studies with LP3 Distribution

Figures 2 through 4 correspond to the case where we are fitting the LP3 distri-

bution to LP3 data assuming we have no regional information. In these cases

we expect good results for all the estimators because we are applying the correct

model for the population from which the data are drawn. The distribution of

the Monte Carlo population, depicted as a frequency plot and as a probability

density function of the logarithm of Q, appears below the main plot. Cases with

regional skew information are addressed in appendix 5.3.

Figure 2, depicts the case when the population skew is γ = 0 and low outliers

are rare. The figure shows that the 3 estimators are identical when there is no

historical information (the left-most three boxplots). If historical information is

present with a perception threshold at approximately the 1% exceedance flood

level (Stedinger and Cohn, 1986), the EMA/MGB (AG=39) method performs

substantially better than B17B/GB (AG=27) or B17B/MGB (AG=29). The

same conclusion applies when the threshold is at the 2% exceedance level, where

the corresponding average gains are 42, 44, 53. When the threshold is at the

10% exceedance level, which corresponds to a very favorable situation, all of the

estimators perform extremely well, with average gains of 77, 80, 72.

Figure 3 depicts the case when the population skew is γ = −0.5. In this case

many low outliers are to be expected. Figure 3 reveals several interesting prop-

erties of the estimators. First, the center of the boxplots are substantially

above the hashed line (the true 1% exceedance level), indicating that all of the

estimators are biased upward when only systematic data are employed. This

phenomenon is actually well known (Kirby, 1974; Stedinger et al., 1993): The

method-of-moments estimator for the skew coefficient is biased toward zero,

and thus method-of-moments quantile estimators are biased upwards for popu-

lations with negative skews and downwards for populations with positive skews
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Figure 2: Monte Carlo results based on 10000 replicate samples of size NS = 40
andNH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ = 0.0.
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(see figure 4). When historical information is present, the EMA/MGB method

performs substantially better than B17B/GB or B17B/MGB.

Figure 4 depicts the case when the population skew is γ = 0.5 and no low

outliers are to be expected. This case reveals the opposite bias seen in figure

3. However, in this case all of the estimators make good use of the historical

information because, for positively skewed populations, the smaller values in the

dataset have little impact on the sample moments and therefore do not influence

the results regardless of which estimator is employed. In Figures 2 and 4 with

H = 10, both B17B estimators do a little better than EMA, though visually the

boxplots are indistinguishable. In all other cases EMA did essentially as well as

the B17B estimators, even with H = 10 in Figure 3.

5.3 Studies with LP3 Distribution and Regional Skew

Figures 107 - 109 show the same cases as Figures 2 - 4 except that regional skew

information has been added with a MSE of 0.15 – a typical value consistent with

Bayesian/GLS skew maps (Lamontagne et al., 2012; Parrett et al., 2011; Gotvald

et al., 2006). The addition of regional skew information substantially improves

all of the estimators, including EMA/MGB and B17B/GB. Interestingly, the

effect is essentially the same for all of the estimators.

In conclusion, while accurate regional skew is a valuable addition to frequency

analyses, it does not need to be considered as an important factor in determining

the relative performance of the three estimators. For the cases with historical

information where 1 or 2 historical floods are expected, again EMA provides

more precise quantile estimators than the B17B estimators. For the case where

10 historical floods are expected and γ = 0.5, there is a virtual tie; when γ =

0.5 and γ = 0 (figures 107-108), B17B/MGB does a little better than EMA,

while B17B/GB does slightly better only when ? = 0 (figure 107). However,
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Figure 3: Monte Carlo results based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ =
−0.5.
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Figure 4: Monte Carlo results based on 10000 replicate samples of size NS = 40
andNH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ = 0.5.
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the big factor to recognize is the value of historical information when carefully

employed, which with EMA in Figure 2 ranges from an average gain of 39%

when 1 historical flood is expected, to 72% when when 10 historical floods are

expected.
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5.4 Robustness Studies

Figures 110, 111, and 5 - 8 apply the three estimators, B17B/GB, B17B/MGB,

and EMA/MGB to data drawn from (mostly) non-LP3 populations selected

specifically to test the estimators’ performance with non-LP3 data. The cases

are labeled “robustness test curves 1-6” in recognition of their origins.

Because figures 110 and 111 depict cases that are equivalent to cases already

discussed in section 5.2, these figures have been left in the appendix.

5.4.1 Robustness with Respect to Pearson Type 3 Population

Figure 5 depicts the performance of the estimators when data are drawn from a

Pearson Type 3 (P3) population, not the LP3. As can be seen in the figure, the

P3 has a substantially different shape than the LP3. All of the estimators are

biased when fitting this population, as is expected because it is not the assumed

population. However, the EMA/MGB estimator does perform slightly better

than the two other estimators when historical information is present. All three

estimators are the same in the absence of historical information because outliers

occur rarely to cause a difference among the estimators.

5.4.2 Robustness with Respect to Mixed Population Constructed

from Two LP3 Distributions

Figure 6 depicts the performance of the estimators when data are drawn from

a mixed population created by choosing the maximum of observations drawn

from two different LP3 distributions, the first with parameters

{M,S2, G} = {4.1212, 0.292, 1.00}
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Figure 5: Monte Carlo results based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from robustness test curve 3.

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●

●
●

●

●
●

●

●●●
●

●

●

●
●

●

●●●
●

●

●

●
● ●

●

●

●●
●●

●

●

●

●

● ●
●●
●●

●

●

●

●

●

●

●●●

●

●

●

●

Comparison of 1% Flood Estimators
Simulated Data from Qc3.dat

  S = 40; H = 100; G = 0.87; No Regional Info

D
is

ch
ar

ge
 [c

fs
]

1e
+

05

B17B/GB
B17B/MGB
EMA/MGB
Q[ 0.01 ]

● ● ●
● ●

●

● ●
●

● ●
●

● ●

● ● ●
●

● ● ●

0
40

80

Expected Number of Historic Floods

E
R

L

18 19
38 36 37

48

89 88 860 0.19 0.19

None (H=0) 1 2 10

2e
+

04
5e

+
04

1e
+

05

Frequency Distribution
Robustness Test Curve 3

Percent Exceedance Probability

Q
[C

F
S

]

99 90 50 10 1

42



and the second with parameters

{M,S2, G} = {4.0900, 0.132, 0.15}

Fitting data from this population tests the robustness of the estimators when

both the population is misspecified. Without historical information, all three

estimators are nearly identical. When historical information is present, the

estimators are no longer identical, but no significant or substantial difference is

visible.

5.4.3 Robustness with Respect to Population Constructed from Two

LP3 Distributions

Figure 7 depicts the performance of the estimators when data are drawn from

a constructed population based on two LP3 distributions, the first with param-

eters

{M,S2, G} = {4.3438, 0.412,−1.00}

and the second with parameters

{M,S2, G} = {4.3936, 0.502,−0.20}

The lower half of the distribution function employs the first parameters, and

the upper half is based on the second parameters. The two parent distributions

are spliced together at their shared median. Fitting data from this popula-

tion again tests the robustness of the estimators with a misspecified population

when low outliers are present. Without historical information, EMA/MGB

and B17B/MGB are nearly identical, and both perform better than B17B/GB.

When historical information is present, EMA/MGB performs much better than

the other estimators.
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Figure 6: Monte Carlo results based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from a mixed population based on robustness test curve
4.

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●● ●●

●●

●●●●

●

●●●
●

●

●●

●

●

●●

●

●●

●
●

●

●
●
●

●

●●
●●

●

●●

●
●

●

●
●
●

●

●●
●●

●

●
●●●●

●

●

●

●

●

●●
●

●

●
● ●

●

●

●●●●

●

●

●

●●

●●
●

●●
●● ●

●

●

●●●●

●

●

●

●●

●●
●

●

●
●

●● ●
●

●

●●●●

●

●

●

●●
●●
●

●

●
●

Comparison of 1% Flood Estimators
Simulated Data from Qc4.dat

  S = 40; H = 100; G = 1.5; No Regional Info

D
is

ch
ar

ge
 [c

fs
]

1e
+

05
1e

+
06 B17B/GB

B17B/MGB
EMA/MGB
Q[ 0.01 ]

● ● ●
● ●

●
● ●

● ● ● ●

● ● ●
● ●

●

● ● ●

0
40

80

Expected Number of Historic Floods

E
R

L 34 34 36
47 47 53

71 72 680 0 0

None (H=0) 1 2 10

1e
+

04
2e

+
04

5e
+

04
1e

+
05

2e
+

05

Frequency Distribution
Robustness Test Curve 4

Percent Exceedance Probability

Q
[C

F
S

]

99 90 50 10 1

44



Figure 7: Monte Carlo results based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from robustness test curve 5.
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5.4.4 Robustness with Respect to Population Constructed from Two

GEV Distributions

Figure 8 depicts the performance of the estimators when data are drawn from

a constructed populations based on two Generalized Extreme Value (GEV) dis-

tributions, the first with parameters

{κ, α, ξ} = {0.08, 24326, 6378}

and the second with parameters

{κ, α, ξ} = {−0.55, 10000, 17330}

The lower three quarters of the distribution function employs the second param-

eters, and the upper quarter is based on the first parameters. The distributions

have the same upper quartile, which is where they join. As was seen in figure 7

and many other examples, when historical information is present, EMA/MGB

performs much better than the other estimators.
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Figure 8: Monte Carlo results based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from robustness test curve 6.
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6 Examples Based on Real Data at Selected Test

Sites

6.1 82 Example Test Sites

Eighty-two USGS streamflow-gaging (streamgages) stations were selected by a

subset of the HFAWG named the “Data Group.” The types of data found at

these sites are organized into four categories in this report:

1. Systematic Gage Data, no historical or low outlier data (26 sites);

2. Historical Data, possibly including high outliers (19 sites);

3. Low Outliers; no historical information (20 sites);

4. Low Outliers, Historical and/or High Outliers (17 sites).

All of the sites used as examples in Bulletin 17B (B17B) were also included

in this study. Clearly 82 sites is a limited sample of the many thousands of

streamgage records throughout the Nation. However, the set is believed to

cover the range of situations, and particularly the most difficult situations, that

arise in practice.

The respective estimated frequency curves for the sites are presented graphically

in appendix B. Because we do not know the true frequency curve, judgments

about the various estimates are necessarily subjective; graphs provide a conve-

nient way to visualize the differences. The magnitude of observed differences,

however, can be summarized in terms of a statistic, the relative percent differ-

ence (RPD), defined as:

RPD ≡ 100(
Q̂

EMA/MGB
p − Q̂B17B/∗

p

Q̂
B17B/∗
p

) (4)
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where p corresponds to the quantile of interest and B17B/∗ refers to B17B/GB

or B17B/MGB, respectively, depending on which estimators are being com-

pared. Although the RPD does not tell us which estimator is better, it does

quantify the magnitude of observed differences between the estimators.

6.2 Sites with Systematic Gage Data and No Low Outliers

or Historical Information

The first category, “Gage Only” data, included 26 sites. The sites have system-

atic data with no historical information, no below gage-base flows, and no low

outliers identified by either using the GB or MGB tests. Almost all RPDs were

zero, as expected. In this case all of the estimators are, in theory, identical2. As

can be seen in figure 1, however, there were two sites where, in fact, the RPD

was not zero.

At site 02037500, James River at Richmond, the RPD ranged between 3 to 5%

for the 3 quantiles. This was because the 1937 peak discharge was recorded

with a qualification code indicating the discharge was greater than the reported

152,000 [cfs] value. PEAKFQ/B17B, the USGS software that implements Bul-

letin 17B, by default omitted the 1937 peak. A user-supplied point discharge

value of 152,000 [cfs] was instead used to characterize the 1937 peak. This

is a “known problem” with B17B, but it bears repeating: PEAKFQ/B17B

is not well adapted to incorporating non-standard discharge values; in some

cases the way it handles them is to ignore them altogether. As a result, the

PEAKFQ/B17B estimates, which reflect B17B methods, do not properly em-

ploy the data.

EMA, the alternative method, does accommodate interval data. Thus the 1937

2Apparent differences between PEAKFQ/B17B and PeakfqSA results of less than 1% in
RPD occur because PEAKFQ/B17B rounds quantile estimates to between 2 and 3 significant
digits; PeakfqSA does no rounding. The estimated moments, which are not rounded, are
identical in these cases
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Figure 9: Relative Percent Difference (RPD) for B17B/GB and EMA/MGB
estimators for 10%, 1%, and 0.2% exceedance probabilities. Includes 26 sites
without historical flood information where no low outliers were identified by
Grubbs-Beck tests.
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peak could be correctly described as inside an interval from 152,000 to infinity.

This was used in the EMA analysis to capture the additional information as-

sociated with the 1937 peak. Because EMA employs an interval range greater

than 152,000[cfs] for the large 1937 peak, EMA estimated higher values for the

upper portion of the frequency curve.

Site 05586500, Hurricane Creek near Roodhouse, had a similar problem. It

showed a RPD range from 4 to -20%. The sixth lowest recorded discharge

had a qualification code indicating the recorded value was less than 70 [cfs].

PEAKFQ/B17B employed a gage base at 70 [cfs], consequently omitting five

additional recorded point discharge values below 70 [cfs]. No low outliers were

identified by either the GB or MGB test. Thus PEAKFQ/B17B unnecessarily

truncated a portion of the left hand tail due to the qualification code of one

observation. A user-supplied interval discharge range from 0 to 70 [cfs] was

properly set in EMA for that single water year, and the five recorded point

discharges below 70 [cfs] were included in the flood frequency analysis. Because

EMA used all recorded discharges and the 0 to 70 [cfs] censored data, EMA’s

estimates were lower particularly at the upper end of the curve.

In both cases where the estimates differed, it was because EMA can accommo-

date data properly that PEAKFQ/B17B cannot accommodate.

6.3 Sites with Historical Information

The testing for the “Historical Data” category included 19 sites, some of which

included high outliers. The historical data sites illustrate the fundamental dif-

ference between EMA and B17B (Stedinger and Cohn, 1986; England et al.,

2003).

EMA estimates, and therefore the RPDs, are sensitive to the historic thresh-

old and historical period employed. All attempts were made to manually en-

51



ter the same values into both software programs. However, some adjustments

were made to accommodate PEAKFQ/B17B’s inability to use interval discharge

ranges. Many sites had one to three recorded historic peaks that exceeded the

historic threshold. A few sites had recorded gage heights at or near record

with missing discharges. Interval discharge values were set in EMA to ac-

commodate these observations; because PEAKFQ/B17B has no correspond-

ing capability, point discharge values were estimated by relating log-space dis-

charge to log-space gage height for those years and these were entered into

PEAKFQ/B17B with the use of similar historic thresholds. Additionally, as a

default, PEAKFQ/B17B sets an historic threshold at the lowest recorded his-

toric value for a user-specified historic period. Thus all missing years of informa-

tion in the historic record are effectively set to the lowest historic threshold. If a

systematic record is missing any discharges (a broken systematic record) in a his-

torical period, the missing data is set to the same historic threshold. This is not

the case if there is missing data in a purely systematic record. PEAKFQ/B17B

will assume no information is known about those missing years of systematic

record.

Overall, the majority of sites with historical information showed a positive RPD

in the flood estimates (figure 10). The interquartile distances ranged from ap-

proximately 0 to 10% for Q̂1%. Three sites had higher RPD for Q̂1%, ranging

from 11 to 37%. EMA and B17B provide substantially different estimates for

these three sites, all of which include historical information and high outliers.

Site 06216500, Pryor Creek near Billings, had one large flood that was the largest

in an extended historical period of 99 years. Figure 11 shows the frequency plots

for both B17B and EMA. Based on visual inspection of the frequency curves,

EMA seems to provide better fit to the data, most clearly to the high outlier in

the right hand tail.
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Figure 10: Relative Percent Difference (RPD) for B17B/GB and EMA/MGB
estimators for 10%, 1%, and 0.2% exceedance probabilities. Figure represents
19 sites with historical information where no low outliers were identified by
Grubbs-Beck tests.
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Figure 11: Pryor Creek near Billings, MT (06216500)
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6.4 Sites with Systematic Gage Data and Low Outliers

The testing for the “Low Outliers” category utilized 20 sites with low outliers

identified using the standard Grubbs-Beck (GB) test recommended by B17B and

a new generalized multiple Grubbs-Beck (MGB) test (Cohn et al., 2013). These

sites did not include historic data. Two sets of comparisons were made between

the results of EMA using only low outliers identified by the MGB (EMA/MGB)

test with

1. B17B using the GB test followed by the conditional probability adjustment

(CPA) (B17B/GB), and

2. B17B using the MGB identified low outlier threshold followed by the CPA

(B17B/MGB).

Current PEAKFQ/B17B software does not include a MGB test option, so,

where needed, the MGB threshold was computed independently and then en-

tered into PEAKFQ as a user-supplied low outlier threshold.

The systematic flood series for site 08133500, North Concho River at Sterling

City, included three peaks with a qualification code indicating the discharge

was less than the reported value of 300 [cfs]. As discussed in the systematic

“Gage Only” section (6.2), PEAKFQ/B17B arbitrarily set a gage base for the

entire record, in this case omitting an additional 17 systematic point discharges

less than 300 [cfs] that did not have remark codes. In EMA, the 3 peaks were

recoded as between 0 and 300 [cfs]. However, the MGB test identified a low

outlier threshold of 634 [cfs]. Thus EMA/MGB identified 23 low outliers and

B17B/GB (with a default-set gage base of 300 [cfs]) identified 20 low outliers.

The result is that the estimated flood quantiles do not differ by very much.

Flood estimate comparisons between EMA/MGB and B17B/GB for (figure 12)

shows the median RPD is essentially zero. However, the RPD has substantial
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Figure 12: Relative Percent Difference (RPD) for B17B/GB, B17B/MGB, and
EMA/MGB estimators for 10%, 1%, and 0.2% exceedance probabilities. Figure
represents 20 sites where low outliers were identified by Grubbs-Beck(GB) or
generalized Grubbs-Beck (MGB), and no historical information.
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variability, indicating that the B17B/GB and EMA/MGB estimators behave

differently when low outliers are present. This increased variability in RPD is

attributed to the very different number of low outliers identified in the flood

series and the methods used to handle low outliers in the frequency analysis,

i.e., EMA’s low outlier censoring versus B17B’s CPA. Of the 20 sites in this

low outlier category, the GB test found only 0 to 2 low outliers per site above

gage base, while the MGB test found 1 to 46 low outliers (figure 13) At some

sites, the MGB identified nearly 50% of the recorded flows (figure 14) as “low
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Figure 13: Number of flows identified as low outliers or below gage-base using
the standard Grubbs-Beck (GB) and generalized Grubbs-Beck (MGB) tests.
Figure represents 20 sites without historical information.
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outliers.” This is the upper bound on the percentage of peaks that MGB will

test.

The observed RPDs were both positive and negative, a result of complex in-

teractions between different low-outlier tests and different fitting procedures.

However, use of the EMA/MGB method seems to produce a better fit to the

upper portion of the frequency curve than is obtained with B17B/GB.

Orestimba Creek near Newman (site 11274500), which is also presented in B17B,

represents an extreme case of low outliers – a flood series of 79 years including

11 zero flows. The LP3 distribution cannot describe the full range of observed

flood flows at this site because the support for the LP3 distribution vanishes for

Q ≤ 0 (Cohn et al., 2013). PEAKFQ/B17B treats all zero flows as below gage

base, while EMA regards them as ordinary low outliers.

The Grubbs-Beck (GB) test yields a low-outlier threshold of 10.8 [cfs] and iden-

tification of a single additional low outlier. The MGB test, in contrast, yields

a low outlier threshold of 782 [cfs], identifying 29 peaks, or 37% of the data, as

low outliers. The RPD between EMA/MGB and B17B/GB ranges from 9% to

21% for the 1%, and 0.2% exceedance probability estimates, respectively (figure

15).

It is interesting to note that B17B/MGB, while close to EMA/MGB in this case,

provides a different and much poorer fit to the data, as can be seen in figure 15.

The B17B/MGB curve lies above the data for exceedance probabilities between

40-50%, and below the data for exceedance probabilities between 10-40%. Above

the 10% level, the B17B/MGB curve rises more sharply than the EMA/MGB

curve, which appears to match the concave downward trend in the data.

The pattern seen at Orestimba is also observed at other sites with multiple low

outliers. For example, at Santa Cruz River near Lochiel, AZ (09480000, figure

16) one sees that EMA/MGB, by treating the influential small peaks as low
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Figure 14: Percent low outliers identified using the generalized Grubbs-Beck
(MGB) test. Figure represents 20 sites without historical information.
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Figure 15: Orestimba Creek near Newman, CA (11274500), fit after application
of the multiple Grubbs-Beck (MGB) test for low outliers.
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outliers, results in a reasonably close fit in the right-hand tail. On the other

hand, the B17B/GB estimator generates a frequency curve that is exceeded by

two of the sample values, which is absurd.

6.5 Sites with Low Outliers, Historical and/or High Out-

liers

Seventeen of the 82 sites included the combination “Low Outlier, Historical

and/or High Outlier.” This category contains sites whose flood series have low

outliers with

1. High outliers in a systematic record, or

2. High outliers in a historical period.

Nothing fundamentally new appeared in these cases. The RPD between EMA/MGB

and B17B/GB are similar to those found in both the “Low Outlier” and “His-

torical” categories. The median RPD for the Q̂10% estimates remained near

zero while and the median RPD were slightly positive for the Q̂1% and Q̂0.2%

estimates (figure 17). About a third of the sites in this category showed a RPD

greater than 15% for the 0.2% estimates and three sites were less than 18%. The

largest RPD between EMA/MGB and B17B/GB was found at site 11176000,

Arroyo Mocho near Livermore, CA. The RPDs for the estimates were between

-48 and -68%, for the Q̂1% and Q̂0.2% , respectively. EMA/MGB found 19 low

outliers in the systematic record (figure 18) while B17B/GB found only one low

outlier above gage base. Additionally, one historic peak was recorded in the

flood series. By censoring multiple low outliers, EMA/MGB more accurately fit

the right-hand tail.

A large positive RPD between EMA/MGB and B17B/GB was found at site

06062500, Tenmile Creek near Rimini, MT. A 10 and 19% RPD difference was
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Figure 16: Santa Cruz River near Lochiel, AZ (09480000)
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Figure 17: Relative Percent Difference (RPD) for B17B/GB, B17B/MGB, and
EMA/MGB estimators for 10%, 1%, and 0.2% exceedance probabilities. Repre-
sents 17 sites with historical flood information where low outliers were identified
by the Grubbs-Beck (GB) or multiple Grubbs-Beck (MGB) test.
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Figure 18: Arroyo Mocho near Livermore, CA (11176000)
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found for the Q̂1% and the Q̂0.2% estimates, respectively. EMA/MGB found

2 low outliers, while B17B/GB found none (figure 19). Here EMA seems to

provide a fit that is more consistent with the trends exhibited by the largest 7

observations.

Figures 18 and 19 illustrate an important point: Both B17B/GB and EMA/MGB

often provide a good fit to the data they employ. However, B17B/GB can be

highly influenced by low outliers with the result being a poor fit at the high

end of the distribution. EMA/MGB, on the other hand, avoids this problem

by identifying and recoding low outliers so that their exact magnitudes do not

distort the fit in the right-hand tail.

The RPD between EMA/MGB and B17B/MGB when a flood series has both

low and high outlier data is similar to that found when only low outliers are

present. The median value and interquartile range for the estimates in the

“combination category” was slightly positive while the median values and in-

terquartile ranges for the estimates in the “low outlier” category were slightly

negative. As expected, the variance in the RPD was minimized for all esti-

mates when the same low outlier threshold was used. The higher estimate from

B17B/MGB is illustrated by figure 18 (11176000, Arroyo Mocho near Livermore,

CA) where a -21% RPD difference for the Q̂1% was found. The MGB low out-

lier threshold of 106 [cfs] was used in B17B/MGB. The MGB test identified

almost 33% of the peaks as low outliers. Using the same low-outlier test, based

on visual inspection, EMA/MGB and B17B/MGB both fit the data reasonably

well.

6.6 Resampling Studies

Figures 20 - 24 depict results from applying the three estimators, B17B/GB,

B17B/MGB, and EMA/MGB, to resampled data from five of the longest-record
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Figure 19: Ten Mile Creek near Rimini, MT (06062500)
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(> 100 observations) sites among the 82 “test” sites considered in section 6. In

these cases, we do not know what the true value of the 1% exceedance event

is, so the figures instead employ an interpolated value based on the two largest

observations in the dataset. However, this is an unreliable estimator; as noted

in section 6.7, many of the “test” sites were selected specifically because they

contained high outliers. In reviewing figures 20 - 24, it is likely best to use one’s

judgement about the reasonableness of the results, possibly referring back to the

test-site results, rather than trying to conjure up a strict quantitative assess-

ment. However, it is noteworthy that, when historical information is present,

the EMA/MGB estimator generally outperforms the other estimators in terms

of ERL, with sites 03011020 in figure 20 being an exception.

6.7 Summary

82 streamflow-gaging stations were chosen as a representative sample of long-

term sites whose flood series include a variety of situations and problems that

are believed to be found throughout the U.S. The flood data was divided into

four categories:

1. Systematic Gage Data, no low outliers or historical information,

2. Historical and/or High outliers,

3. Low Outliers, and

4. Low Outliers, with Historical and/or High Outliers.

The performance of EMA/MGB, B17B/GB and B17B/MGB methods were

compared visually for each of the sites, and a relative percent difference (RPD)

statistic was calculated corresponding to each of three exceedance probabilities

to compare the EMA and B17B estimates.
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Figure 20: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Historical” category site 03011020.
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Figure 21: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Low Outlier” category site 11152000.
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Figure 22: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Gage Only” category site 14048000.

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●
●

●

●

●
●
●●

●

●●

●

●●
●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●
●
●●●

●●

●

●

●

●

●

●
●
●

●●

●

●

●●●●

●

●●

Comparison of 1% Flood Estimators
Resampled Data from 14048000.dat

  S = 40; H = 100; G = −0.12; No Regional Info

D
is

ch
ar

ge
 [c

fs
]

B17B/GB
B17B/MGB
EMA/MGB
Q[ 0.01 ]

● ● ● ● ● ● ● ●
●

● ● ●

● ●

●

● ●

● ● ●

●

0
40

80

Expected Number of Historic Floods

E
R

L

31 34
55

38 42
64 64 65

920.05 1.4 1.4

None (H=0) 1 2 10

70



Figure 23: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Low Outlier” category site 14321000.
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Figure 24: Results based on resampled data drawn from observed discharges at
“Combination” category site 13185000.
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When only systematic flood data were present, identical flood estimates (RPD

equal to zero) were obtained except for those cases where B17B cannot accom-

modate non-standard data correctly. When historical and/or high outliers were

present, observed RPDs were positive more than half the time. This is at least in

part due to the 82 sites that were selected for testing, many of which included

historical “high outliers.” EMA tends to attach more “weight” to historical

flood information than does B17B (Stedinger and Cohn, 1987), so where the

historical period includes an unusually high peak, the EMA/MGB estimate will

tend to be higher than the B17B/GB estimate.

Flood series that contain multiple low outliers exhibited a range of results pri-

marily due to the very different number of low outliers identified by the GB

and MGB tests and the methods used to handle low outliers in the frequency

analysis, i.e., EMA’s low outlier censoring versus B17B’s CPA. When the same

low outlier threshold was used for the EMA and B17B’s CPA fitting procedure,

the RPDs were usually smaller and negative. For those sites with low outliers

with historical, and/or high outlier data, similar RPD were found to those in

the historical and low outlier categories. This combination group included both

low outliers and high outliers. The RPD were notably more positive for these

estimates.

EMA/MGB generally identified more low outliers, when low outliers were present.

In these cases, based on subjective assessment EMA/MGB always provided a

closer fit to the largest peaks in the dataset.

Additional studies were conducted that involved resampling data from sites

with the longest records. Although the true value of the 1% exceedance event

is not known for these sites, the resampling experiments confirmed that the

EMA/MGB estimator performed reasonably well in all cases and generally pro-

vided higher average gains than the alternative estimators.
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7 Conclusions

The study reported here was designed to determine how well proposed changes

to Bulletin 17B would perform in practice compared to the current recommen-

dations in Bulletin 17B. In particular, the investigations focused on techniques

for:

• Incorporating information related to historical flooding that occurred out-

side the period of systematic streamgaging;

• Addressing the identification and treatment of PILFs (zero flows and low

outliers);

In order to answer these questions, Monte Carlo studies were conducted by

resampling from real records, or drawing random samples from specified LP3

and non-LP3 distributions. In addition, problematic datasets from across the

country were selected to serve as test cases for comparing the estimators. To

summarize, results are presented for:

• Monte Carlo simulations employing data drawn from specific LP3 popu-

lations;

• Monte Carlo simulations employing data drawn from non-LP3 populations

that were selected to reflect likely deviations, based on the experience of

the Data Group, from the hypothesized LP3 distribution;

• A direct subjective comparison of results at 82 real “test sites” identified

by an independent Data Group as both “typical” and “challenging” for

flood frequency estimation;

• Resampling with replacement of the data at the 82 sites.
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It is believed that, taken together, these studies provide a reasonably com-

prehensive, valid and robust assessment of the properties of the Bulletin 17B

procedures and proposed extensions and improvements.

The results demonstrate that the proposed alternative method, denoted EMA/MGB:

• Generally performs at least as well as, and in some cases much better

than, Bulletin 17B procedures in terms of the Mean Square Error (MSE)

of flood quantile estimates;

• Allows for incorporation of more general types of flood-frequency infor-

mation;

• Avoids some annoying problems that arise when applying Bulletin 17B

in practice datasets containing non-standard flood data (exceedances of

thresholds, and “less-than” values).

In summary, the results here generally confirm other studies published in the

hydrological literature that have found that EMA generally provides improved

flood frequency estimates.
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A Characteristics of 82 Test Sites
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B Graphical Comparisons Between EMA and

B17B at the 82 Test Sites

B.1 Systematic Data Sites
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Figure 25: Site 01076500 with Systematic Data Only
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Figure 26: Site 01439500 with Systematic Data Only
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Figure 27: Site 01555500 with Systematic Data Only
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Figure 28: Site 01635500 with Systematic Data Only
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Figure 29: Site 02037500 with Systematic Data Only
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Figure 30: Site 02256500 with Systematic Data Only
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Figure 31: Site 03183500 with Systematic Data Only
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Figure 32: Site 05586500 with Systematic Data Only
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Figure 33: Site 06406000 with Systematic Data Only
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Figure 34: Site 06710500 with Systematic Data Only
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Figure 35: Site 07208500 with Systematic Data Only
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Figure 36: Site 07382000 with Systematic Data Only
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Figure 37: Site 08380500 with Systematic Data Only
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Figure 38: Site 08387000 with Systematic Data Only
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Figure 39: Site 10128500 with Systematic Data Only
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Figure 40: Site 11266500 with Systematic Data Only
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Figure 41: Site 12134500 with Systematic Data Only
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Figure 42: Site 12414500 with Systematic Data Only
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Figure 43: Site 12437950 with Systematic Data Only
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Figure 44: Site 12451000 with Systematic Data Only
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Figure 45: Site 14021000 with Systematic Data Only
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Figure 46: Site 14048000 with Systematic Data Only
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Figure 47: Site 14137000 with Systematic Data Only
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Figure 48: Site 15072000 with Systematic Data Only
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Figure 49: Site 16518000 with Systematic Data Only
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Figure 50: Site 16587000 with Systematic Data Only
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B.2 Sites with Historical Information
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Figure 51: Site 01350000 with Systematic and Historical Data
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Figure 52: Site 01562000 with Systematic and Historical Data
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Figure 53: Site 01636500 with Systematic and Historical Data
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Figure 54: Site 02138500 with Systematic and Historical Data
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Figure 55: Site 03011020 with Systematic and Historical Data
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Figure 56: Site 03051000 with Systematic and Historical Data
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Figure 57: Site 03159500 with Systematic and Historical Data
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Figure 58: Site 03550000 with Systematic and Historical Data
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Figure 59: Site 03558000 with Systematic and Historical Data
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Figure 60: Site 03606500 with Systematic and Historical Data
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Figure 61: Site 04293500 with Systematic and Historical Data
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Figure 62: Site 06216500 with Systematic and Historical Data
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Figure 63: Site 06600500 with Systematic and Historical Data
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Figure 64: Site 06898000 with Systematic and Historical Data
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Figure 65: Site 07067000 with Systematic and Historical Data
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Figure 66: Site 08167000 with Systematic and Historical Data
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Figure 67: Site 08378500 with Systematic and Historical Data
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Figure 68: Site 09482500 with Systematic and Historical Data
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Figure 69: Site 12413000 with Systematic and Historical Data
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B.3 Sites with Low Outliers
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Figure 70: Site 01668000 with Low Outliers; no historical information
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Figure 71: Site 03345500 with Low Outliers; no historical information
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Figure 72: Site 05572000 with Low Outliers; no historical information
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Figure 73: Site 06176500 with Low Outliers; no historical information
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Figure 74: Site 07203000 with Low Outliers; no historical information
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Figure 75: Site 08133500 with Low Outliers; no historical information
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Figure 76: Site 08150000 with Low Outliers; no historical information
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Figure 77: Site 08189500 with Low Outliers; no historical information
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Figure 78: Site 09241000 with Low Outliers; no historical information
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Figure 79: Site 09480000 with Low Outliers; no historical information
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Figure 80: Site 10234500 with Low Outliers; no historical information
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Figure 81: Site 11028500 with Low Outliers; no historical information
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Figure 82: Site 11152000 with Low Outliers; no historical information

147



Figure 83: Site 11274500 with Low Outliers; no historical information
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Figure 84: Site 11383500 with Low Outliers; no historical information

149



Figure 85: Site 12307500 with Low Outliers; no historical information
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Figure 86: Site 13302500 with Low Outliers; no historical information
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Figure 87: Site 13343660 with Low Outliers; no historical information

152



Figure 88: Site 14321000 with Low Outliers; no historical information
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Figure 89: Site 16068000 with Low Outliers; no historical information
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B.4 Sites with a Combination of Data Types
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Figure 90: Site 03289500 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 91: Site 05270500 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 92: Site 05291000 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 93: Site 05464500 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 94: Site 06062500 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 95: Site 06897000 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 96: Site 06933500 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 97: Site 07138600 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 98: Site 08164000 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 99: Site 08171000 with a Combination of Low Outliers, Historical and/or
High Outliers
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Figure 100: Site 09361500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 101: Site 09471000 with a Combination of Low Outliers, Historical
and/or High Outliers

167



Figure 102: Site 11176000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 103: Site 11464500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 104: Site 11522500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 105: Site 12039500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 106: Site 13185000 with a Combination of Low Outliers, Historical
and/or High Outliers
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B.5 Studies with LP3 Distribution and Regional Skew

Figures 107 - 109 show the same cases as Figures 2 - 4 except that regional skew

information has been added with a MSE of 0.15 – a typical value consistent

with Bayesian/GLS skew maps Lamontagne et al. (2012); Parrett et al. (2011);

Gotvald et al. (2006). As expected, all of the estimators perform better with

regional information. Aside from that, however, there is little difference between

the corresponding figures.
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Figure 107: Results are based on 10000 replicate samples of size NS = 40 and
NH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ = 0.0
Regional skew is assumed to be 0.0 with MSE = 0.15.
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Figure 108: Results are based on 10000 replicate samples of size NS = 40 and
NH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ = −0.5.
Regional skew is assumed to be −0.5 with MSE = 0.15.
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Figure 109: Results are based on 10000 replicate samples of size NS = 40 and
NH = 100 drawn from a Log-Pearson Type 3 distribution with skew γ = 0.05.
Regional skew is assumed to be 0.5 with MSE = 0.15.
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B.6 Additional Studies with Specific Frequency Curves

Figures 5 - 8 and 110 - 111 apply the three estimators, EMA/MGB, B17B/GB

and B17B/MGB, to data drawn from specific populations selected to test the

estimators’ performance. The Cases are labeled “robustness test curve 1-6” in

recognition of their origins. Figures 5 - 8 are presented in the main body of this

report. Figures 110 and 111 are presented here in the appendix because they do

not actually deal with robustness but rather with specific LP3 populations. In

fact, because the estimators are all invariant with respect to location and scale,

these two cases duplicate cases already considered in the report. Figure 110

depicts essentially the same case as figure 4 with a population skew of γ = 0.5.

Figure 111 depicts essentially the same case as figure 3 with a population skew

of γ = −0.5.
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Figure 110: Results are based on 10000 replicate samples of size NS = 40 and
NH = 100 drawn from robustness test curve 1
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Figure 111: Results are based on 10000 replicate samples of size NS = 40 and
NH = 100 drawn from robustness test curve 2
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