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Executive Summary

For the past 35 years, Bulletin 17B has guided flood-frequency anal-

yses in the United States. During this period much has been learned

about both hydrology and statistical methods. In keeping with the tra-

dition of periodically updating the Bulletin 17B Guidelines in light of

advances in our understanding and methods, the Hydrologic Frequency

Analysis Work Group (HFAWG) was charged by the Subcommittee on

Hydrology (SOH) of the Advisory Committee on Water Information

(ACWI) to consider possible updates to Bulletin 17B.

The purpose of this report is to consider the statistical performance

of possible revisions to Bulletin 17B procedures. Of particular interest

are procedures designed to accommodate more general forms of flood

information. The concern is how the proposed procedures would affect

the precision, accuracy and robustness of flood-frequency estimates.

The investigations reported here focus on techniques for:

• Incorporating information related to historical flooding that oc-

curred outside the period of systematic streamgaging;

• Identification of potentially influential low floods (PILFs); and

The proposed changes, which mostly involve generalizing Bulletin 17B’s

method-of-moments procedures by using the Expected Moments Al-

gorithm (EMA), are relatively modest, at least in the sense that they

would not affect the main features of Bulletin 17B. The proposed meth-

ods include:

• Continued use of the log-Pearson Type III (LP3) distribution;

• Continued use of the Method-of-Moments fitting method applied

to the logarithms of annual-peak-flow data; and
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• Identification of low outliers and PILFs using a generalized Grubbs-

Beck-type criterion that is sensitive to multiple potentially influ-

ential low flow (“PILF”; such low floods were previously denoted

“low outliers”).

The hydrological literature already provides extensive support for

the theory behind the proposed changes. The remaining question is

practical: How well do the proposed methods perform under typical

and realistic conditions and specifically with difficult records occasion-

ally encountered in practice?

In order to answer these questions, the HFAWG commissioned the

work reported here. Four major sets of results are provided:

• Monte Carlo simulations of fitting procedures employing data

drawn from simulated LP3 populations;

• Monte Carlo simulations of fitting procedures employing data

drawn from non-LP3 populations that were selected to reflect

likely deviations of flood series, based on the experience of HFAWG

members, from LP3 distributions;

• A direct comparison of the fitted LP3 distributions for 82 real

“test sites” identified by an independent Data Group as both

“typical” and “challenging” for flood frequency estimation; and

• Simulations of fitting procedures using records obtained by re-

sampling with replacement from the longest of the 82 test-site

records.

Collectively these studies provide a reasonably comprehensive, valid

and robust assessment of the properties of the Bulletin 17B methods

and proposed alternatives.
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The experiments and analysis indicate that the flood quantile esti-

mators proposed as a revision of Bulletin 17B:

• Perform generally as well as, and in some cases much better than,

Bulletin 17B estimators in terms of the Mean Square Error (MSE)

of flood quantiles estimates;

• Allow for incorporation and efficient statistical treatment of broader

classes of flood-frequency data and information, including histor-

ical information, binomial data and interval data; and

• Generally confirm studies and the theoretical findings reported

in the hydrological literature that would support use of updated

estimation procedures that have been developed since Bulletin

17B was published.
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1 Introduction

Flooding is the costliest natural hazard facing the United States in terms of

loss of both life and property (Mileti, 1999; ACWI, 2011). While policy mak-

ers and planners have an array of tools to reduce flood losses through struc-

tural and non-structural mitigation, doing so in practice requires a quan-

titative, uniform and consistent approach for estimating flood risk (Tasker

and Thomas, 1978; Thomas, 1985; Griffis and Stedinger, 2007). Recognizing

this, the federal government has developed standard guidelines for perform-

ing flood-frequency analyses, and published these guidelines in a document

known as “Bulletin 17B” (IACWD, 1982). The methods defined in Bulletin

17B inform literally millions of decisions about land use and construction,

emergency response and recovery, and countless other governmental and

private-sector activities in the United States. The practical value of federal

guidelines is not in dispute.

Nonetheless Bulletin 17B (IACWD, 1982, “B17B”) has its limitations. The

document itself recognized that additional work was needed to improve some

of its procedures (IACWD, 1982, p. 27, “Future Studies”). In light of ad-

ditional research conducted to address these concerns, both researchers and

practicing hydrologists have recently called for updates to the B17B Guide-

lines. The purpose of this report is to evaluate some proposed modifications

to the flood-frequency methods specified in Bulletin 17B.

In November of 2005, the HFAWG proposed the following (ACWI, 2011,

minutes from February 2005 HFAWG meeting):

Based on recently completed research, the HFAWG proposes

DRAFT 12 DRAFT



to investigate the following possible improvements in Bulletin

17B:

1. Evaluate and compare the performance of the Expected Mo-

ments Algorithm (EMA) (Cohn et al., 1997) to the weighted-

moments approach of Bulletin 17B (Appendix 6) for ana-

lyzing data sets with historic information and paleoflood

data.

• Apply EMA and Bulletin 17B to gaging station data

that include low and high outliers and historic data and

those that do not. Develop criteria for determining

if EMA provides more accurate and consistent flood

estimates.

• Review and evaluate the published literature for com-

parisons of EMA to conventional Bulletin 17B proce-

dures.

• Recommend improved plotting position formula when

historic data are available.

2. Evaluate and compare the performance of EMA to the con-

ditional probability adjustment of Bulletin 17B for analyz-

ing data sets with low outliers and zero flows.

• Apply EMA and Bulletin 17B to gaging station data

the include low and high outliers and historic data and

those that do not (same data set as noted above). De-

velop criteria for determining if EMA provides more

DRAFT 13 DRAFT



accurate and consistent flood estimates.

3. Describe improved procedures for estimating generalized/regional

skew.

• Evaluate revisions needed in Bulletin 17B to describe

improved procedures for estimating generalized/regional

skew based on recently completed research.

4. Describe improved procedures for defining confidence lim-

its.

• Evaluate revisions needed in Bulletin 17B to describe

new procedures for defining confidence limits that in-

clude the uncertainty in the skew coefficient.

• Describe confidence limit procedures for EMA (if adopted).

This report presents results of analyses that focus on items 1 and 2. Items

3 and 4 are addressed in previous literature. Advances in regional skew

analyses are describes in a series of USGS reports Lamontagne et al. (2012);

Veilleux and Stedinger (2010); Veilleux et al. (2012); Confidence interval

issues have been discussed in (Cohn et al., 2001; Cohn, in prep, 2015) (also

see Cohn et al. (2013)) and earlier in Chowdhury and Stedinger (1991).

More recent improvements in computational algorithms for computing con-

fidence intervals based on EMA flood frequency analyses are the topic of

a publication in press (Cohn 2015). Note that none of these proposed

changes addresses issues that arise when fitting flood frequency curves to

non-stationary conditions that may arise due to land use change, changes to

water management practices, or climate variability or change. This is left
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to future work.

The report is organized in the following manner. Chapter 2 provides a brief

review of literature on the topic addressed herein and, through references, a

more general review of the larger field of flood frequency analysis. Chapter

3 discusses criteria for judging estimator performance including statistical,

practical and operational concerns. Chapter 4 reviews the statistical meth-

ods that are considered in this report, primarily the existing Bulletin 17B

recommendations and the proposed Expected Moment Algorithm (EMA).

Chapter 5 presents a set of Monte Carlo results based on synthetic samples

from a variety of assumed and alternative distributional families, as well as

resampling at long-record sites. Chapter 6 reviews the performance of the

Bulletin 17B and EMA procedures at 82 real sites that were selected to rep-

resent conditions that exist at sites throughout the United States. Chapter

7 presents conclusions, a summary of the main findings of the research as

reported in the earlier chapters. Two appendices are included that provide

meta-data on the real-world sites employed in this study and additional

figures illustrating estimator performance.
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2 Literature Sources: The History of Flooding and

Flood Risk Estimation

Bulletin 17B (IACWD, 1982) defines the current method for conducting

peak-flow frequency analyses in the U.S. It descends from a series of studies

and guidelines beginning with Bulletins 13 (ICOWR, 1966), 15 (USWRC,

1967), 17 (USWRC, 1976), and 17A (USWRC, 1977). Each of these includes

a list of relevant citations.

The history of the Bulletins and a discussion of the methods recommended in

the current Bulletin 17B appears in Thomas (1985), Stedinger et al. (1993)

and Griffis and Stedinger (2007). There is also a vast literature on meth-

ods for flood-frequency estimation, and an extensive list of citations can be

found in Stedinger et al. (1993), Griffis and Stedinger (2007), and Dawdy

et al. (2012). American Institutes for Research (AIR, 2001) provides a com-

prehensive chronology of the history of flood risk estimation as well as a

comprehensive bibliography of the flood-frequency literature prior to 2000.

Stedinger et al. (1993) provides a bibliography of statistical techniques em-

ployed in flood frequency analyses.
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3 Metrics for Evaluating Flood-Frequency Esti-

mators

In practice, the benefits of more accurate flood information depend on many

factors that are site-specific. In particular, benefits depend on the physical,

geological, social, and other characteristics of the site. However, in trying

to assess the performance of flood-risk estimation techniques, one typically

simplifies the problem by considering a small number of generally accepted

criteria that are believed to characterize adequately an estimator’s perfor-

mance.

The criteria employed in this study can be divided into several groups:

• Operational

1. Ease of Application Methods should be relatively easy to imple-

ment;

2. Applicability to Available Data Methods should be able to make

efficient use of the data types available for flood investigations;

3. Uniformity of Methods Where possible, standardized methods

and software should be used to ensure that different people per-

forming the same analysis will obtain the same risk estimates.

This will also ensure that frequency estimates are fully repro-

ducible.

• Statistical

1. Bias and consistency On average, risk estimates should approx-
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imately equal the true risk; as more information becomes avail-

able, risk estimates should converge to the true risk;

2. Efficiency Estimators should extract as much information from

the data as possible so as to minimize the mean square error of

estimated statistics;

3. Quantified uncertainty Estimates should be accompanied by quan-

titative assessments of their uncertainty;

• Political, Legal and Institutional Criteria Standard methods should be

consistent, uniform, and easily explained. They should satisfy legal re-

quirements, and should serve institutional requirements of the federal

government and its National Flood Insurance Program, among others.

A set of metrics are employed in this report to quantify the differences among

different parameter estimation procedures.

BIAS The expected difference between the estimate and true value of the

parameter of interest.

MSE Mean Square Error (MSE) is defined as the expected squared differ-

ence between the estimate and true value of the parameter of interest.

This is sometimes expressed as the sum of the variance plus the bias

squared.

ERL The efficiency of estimators that employ historical flood information is

quantified in terms of Effective Record Length (ERL), the amount of

equivalent systematic record that, by itself, would provide the preci-
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sion achieved with the combination of both systematic and historical

information.

AG A more general measure of estimator efficiency is the Average Gain

(AG), which expresses the benefit of each year of historical information

in terms of the information in a year of systematic data.

RPD The Relative Percent Difference (RPD) statistic is used to quantify

differences among estimators.

Taken as a whole, these metrics provide the quantitative foundation for

characterizing the performance of Bulletin 17B flood frequency methods

and proposed alternatives.
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4 Estimation

For most of this study, flood quantile estimates were computed using two

parameter estimation methods (B17B and EMA) and two PILF (Potentially

Influential Low Floods) identification procedures (Grubbs-Beck (GB) and

Multiple Grubbs-Beck (MGB)). Section 4.2 discusses the motivation of the

GB procedure in Bulletin 17B and of a proposed replacement, MGB. The

characteristics of the MGB method are discussed in section 4.3. Section

4.5 provides a discussion of the conditional probability adjustment (CPA)

used by Bulletin 17B and the proposed EMA approach to analyze records

containing zero flows, PILFs and other events described as being less than

a specified threshold. Section 4.6 discusses three specific combinations of

parameter estimators and PILF identification procedures considered in this

report. Section 4.7 identifies the software used in the studies.

4.1 Parameter Estimation

Bulletin 17B (IACWD, 1982) recommends use of the method of moments to

estimate the first three sample moments, although a number of additional

procedures are employed for dealing with special situations. All of the pro-

cedures are documented in the Bulletin, and additional information on the

procedures is found in Thomas (1985), Stedinger et al. (1993) and Griffis

and Stedinger (2007).

The Expected Moments Algorithm (EMA) is a straightforward generaliza-

tion of the method of moments that is designed to accommodate both the

point data envisioned in Bulletin 17B (IACWD, 1982) as well as various
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forms of non-standard interval data. The details of EMA are discussed

in Cohn et al. (1997), Cohn et al. (2001) and Griffis et al. (2004b). At

most sites across the United States, where only systematic annual peak flow

(APF) data are currently available, the B17B and EMA frequency estimates

are essentially identical. However, where non-standard data are present, the

two estimates will differ. In some cases the differences can be substantial

(see Section 6).

4.2 Identification of Outliers and Potentially Influential Low

Floods

Among the proposed improvements to Bulletin 17B is a new multiple Grubbs-

Beck (MGB) low-outlier test. MGB is a natural generalization of the Bul-

letin 17B Grubbs-Beck test, and addresses item 3 in the Bulletin 17B list of

needed future work (IACWD, 1982): “The treatment of outliers both as to

identification and computational procedures.”

PILF identification and treatment are important issues in flood frequency

analysis guidelines because unusually small observations, which often result

from physical processes that are of little relevance to the estimation of large

floods, can nevertheless have a large influence on statistical estimates of

extreme flood quantiles. In arid regions, for example, channel losses often

result in annual flood peaks that are zero. As a result, an LP3 distribu-

tion cannot fit the entire flood record. Moreover, samples from an LP3

distribution with substantial negative log-space skew (γ ≤ −0.5) typically

contain so-called “low outliers,” and, using log-space moments, those un-

usually small values have undue influence and can result in poor estimates
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of the large flood quantiles of interest in flood risk management. Unusually

small values are therefore a real concern because it is imperative that the

estimators defined in a Bulletin 17C, in addition to being efficient, possess

the characteristic of robustness – meaning that they perform reasonably well

even when underlying assumptions are violated.

Robustness is sometimes achieved in statistical analyses through explicit

adaptation: The analyst looks for problems and then addresses the critical

issues. In frequency analyses, for example, one often uses a probability plot

to examine if sample data are consistent with a fitted curve (Stedinger et al.,

1993). The authors of Bulletin 17B dealt with the robustness issue by explic-

itly identifying low outliers that “depart significantly from the trend of the

remaining data.” They note that “The retention, modification and deletion

of these outliers can significantly affect the statistical parameters computed

from the data.” Thus the authors of Bulletin 17B explicitly recognized that

we do not want small flood values distorting the model that describes the

distribution of large floods (the “trend of the remaining data”). They ex-

plicitly note that failure to address this issue would “significantly affect the

[computed] statistical parameters.”

Barnett and Lewis (1994, pp. 7-9) discuss this idea of using outlier tests

to identify unusual observations that otherwise might have undue influence

in an analysis. Low-outlier identification tests provide an objective and

standard method for identifying outliers, ensuring that different hydrologists

analyzing the same data will arrive at the same conclusions.

The purpose of using the Bulletin 17B GB test, and the MGB extension

considered here, is to identify Potentially Influential Low Floods, or PILFs.
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Although the low flows that are unusually different from the remaining data

have previously been termed ”low outliers”, a more precise term is Poten-

tially Influential Low Floods (PILFs). This report uses PILFs most often

when describing the MGB extension, but, in keeping with previous termi-

nology, uses ”low outliers” when describing compariosns and test results.

The defining characteristic of PILFs is that they potentially have a large

influence on the upper tail of the fitted frequency curve. For example, when

data sets are highly negatively skewed, the smallest observations can be very

influential in determining the estimated skewness coefficient, and as a result

the estimated value of the 1%-exceedance probability (100-year flood). In

order to provide a robust and objective procedure, Bulletin 17B employs the

Grubbs-Beck (GB) test to identify low outliers (PILFs).

4.3 The MGB Test Algorithm for Identifying PILFs

The Bulletin 17B Grubbs-Beck (GB) test provides an objective method for

identifying values that should be treated as “low outliers,” in the terminology

employed in that report. However, the Bulletin 17B GB test “low-outlier”

threshold is based on the assumption that only the smallest observation in

the sample might be a low outlier. As a result, even though multiple low

outliers in flood data are common, the GB test rarely identifies more than

a single low outlier (Lamontagne et al., 2013). To provide an objective cri-

terion for multiple low outlier identification, a multiple Grubbs-Beck test

(MGB) was developed that employs the actual distribution of the ith small-

est observation in a sample of n independent LP3 variates with zero skew

(Cohn et al., 2013).
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Cohn et al. (2013) provides the probability p(i ;n) that the ith smallest ob-

servation in a normal sample of size n might be as small or smaller than the

value observed. If p(i ;n) is small enough, then the ith smallest observation

is considered unusual, and all values equal to and less than the ith small-

est observation are re-coded as censored values. Rosner (1975) explains the

advantages of this generalization of the Grubbs-Beck statistic in the con-

text of an analogous two-sided multiple outlier test. The specialized test

adopted here considers only outliers in the lower tail. Spencer and McCuen

(1996) and McCuen (2002) also discuss outlier tests based upon a generalized

Grubbs-Beck statistic.

The procedure for actually identifying Potentially Influential Low Floods

(PILFs) has two steps:

1. Starting at the median and sweeping outward towards the smallest

observation, each observation is tested and is identified as a PILF if

p(i ;n) ≤ 0.5%. If the kth observation is identified as a PILF, the

outward sweep stops and the kth and all smaller observations are also

identified as PILFs.

2. Then, as with the current Grubbs-Beck procedure in Bulletin 17B,

an inward sweep starts at the (k + 1)st smallest observation, where

the observation is identified as a PILF if p(k+1 ;n) ≤ 10%. This is

repeated, sweeping towards the median, until an observation m fails

to be identified as a PILF by the inward sweep, at which point the

inward sweep stops.

The number of PILFs identified by the procedure is then the larger of k and
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m− 1.

Bulletin 17B also used a 10% significance test but employed only a single

inward sweep. A second critical difference is that the new inward sweep

uses the p(i ;n) function which correctly describes whether the ith largest

observation is unusual in a sample of size n.

The MGB’s first outward sweep seeks to determine if there is some break in

the lower half of the data that would suggest the sample is best treated as if

it had a number of PILFs. The second sweep using a less severe significance

level, p(i ;n) ≤ 10%, mimics Bulletin 17B’s willingness to identify one or

more of the smallest observations as PILFs so that the analysis is more

robust.

If a record has, for example, 5 zero flows, then the smallest non-zero flow is

considered to be the 6th smallest observation in the record. This correctly

reflects the fact that the flood record included 5 smaller values. The GB

test in Bulletin 17B includes no mechanism for correcting its threshold when

testing the smallest non-zero flood value in a record containing one or more

zeros, or below-threshold discharges at sites with crest-stage gages. This is

particularly problematic because sites with zero flows are likely to include

one or more small or near-zero flood values which should be identified as

PILFs. The MGB test solves this problem.

4.4 Would Identification of Fewer PILFs Yield Better Fits?

The MGBT was defined to search for PILFs – potentially influential low

floods – in the bottom 50% of the sample. Citing various reasons, some

practicing hydrologists have expressed concern about declaring half of a
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sample to be“low outliers” or PILFs. In part, this reflects concern about the

number of “low outliers” but the focus should be on achieving robustness in

estimating large floods, not to utilize as many point observations as possible.

In any case, one can determine the consequence of limiting the number of

identified PILFs to, for example, one quarter of the sample rather than half.

This question is addressed here through consideration of the 82 test sites.

One immediate observation is that the question is relevant to only a handful

of cases; the MGB test identifies fewer than 25% PILFs at 69 of the 82

test sites. The 25% constraint would not be binding at these sites, and the

results at these sites are not affected by limiting the number of PILFs to

25%.

Table 1 reports the impact the 25% limit at the remaining 13 test sites.

At these sites, limiting the number of PILFs to 25% of the sample will

affect estimates of the 1% exceedance event, which appears in the right-

most column. The changes ranged from −20% to +58% with a median

difference of +6% and average increase of +9%.

On average, use of the lower quartile (25% limit) resulted in a modest in-

crease in the 100-year flood estimate. The question then becomes essentially

subjective: Are the fitted frequency curves “better” with the 25% limit or

the 50% limit? In the three cases where the absolute value of the change

exceeded 20%, the 100-year flood increased by 22%, 30% and 50%. If the

MGBT has been censoring too heavily, we would expect to see no consistent

increase or decrease from censoring less. To see an average increase of 9%,

with such consistently positive increases when large differences occur, sug-

gests that the 25% constraint leads to admitting small peaks that unduly
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Table 1: Impact of restricting search for PILFs to bottom quartile of sample
at the 13 sites where more than 25% of the observations had been identified
as PILFs using the standard Multiple Grubbs-Beck test. The change in the
1%-exceedance event appears in the right-most column, and ranged from
−20%(0.20) to +58%(0.58), with a median increase of +6% and average
increase of +9%. Here Q̂0.01,[50], N[50] refer to the estimated 1%-exceedance
flood with the 50% limit and the corresponding number of identified PILFs;
Q̂0.01,[25] and N[25] refer to the corresponding statistics for the 25% limit.

Site USGS ID Q̂0.01,[50] N[50] Q̂0.01,[25] N[25] (
Q0.01,[25]−Q0.01,[50]

Q0.01,[50]
)

17 03345500 49700 34 54100 1 0.09
23 05291000 16000 29 12800 20 -0.20
37 07138600 1110 12 983 5 -0.12
41 08133500 26800 23 34900 0 0.30
45 08171000 113000 27 110000 19 -0.02
50 09241000 4810 22 4550 17 -0.05
56 10234500 1110 45 1360 0 0.22
58 11152000 30800 46 32100 18 0.04
59 11176000 2440 19 3860 1 0.58
61 11274500 13600 29 14500 19 0.06
63 11464500 21600 15 25400 5 0.18
65 12039500 50400 47 56500 0 0.12
73 13302500 18000 42 18500 16 0.03
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affect the 1%-exceedance flood estimate.

Appendix B includes showing flood magnitude plotted against Annual Ex-

ceedance Probability (AEP) for these three cases. Visual examination of

the plots suggests that the algorithm that started its search at the median

made reasonable decisions, as can be seen in the figures (in Appendix B):

08133500 MGBT [50] identifies 23 PILFS while MGBT[25] identifies none. Note

the sharp break in the data just above the lower quartile that MGBT[50]

catches and MGBT[25] would not (Figure 75).

11176000 Note a weak break in the data just above the lower quartile. Using the

MGBT[50] identifies this discontinuity and results in a fit that is much

more consistent with the 8 largest observations. B17B/GB with one

outlier seems to overestimate the 1%-exceedance flood when compared

with the data (Figure 102).

10234500 Note kink visible just below the median which MGBT[50] identifies,

with the result that the MGBT recommends censoring almost half the

data. Given the shape of the data, that seems reasonable. Which ap-

proach provided the best fit? With the more extreme censoring, less

weight is placed on the smallest observations and the B17B/MGB and

EMA/MGB fits are much more consistent with the 7 largest observa-

tions in the sample. In short, the MGB as defined seems to achieve

the goal of matching the trend in the largest observations (Figure 80).

In 10 of 13 cases the differences were small. In three cases the differences

were greater than 20% and all were positive. In at least two of the three
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cases, better fits were obtained with the more aggressive censoring, and it

is arguable that this is the case in all three. Thus MGBT[50] is arguably a

good choice for identifying potentially influential low floods.

4.5 Treatment of Floods Identified as Outliers: CPA and

EMA

The logarithm of zero is minus infinity, so zero flows cannot be employed in

a standard method-of-moments fit using the logarithms of the flood mag-

nitudes. As discussed here, the two estimation methods, B17B and EMA,

deal with zeros and low outliers in different ways.

To deal with such low outliers, Bulletin 17B employs the Conditional Proba-

bility Adjustment (CPA) developed by Jennings and Benson (1969). If the r

smallest floods in a record of length n are identified as outliers less than some

threshold qT , then the CPA fits a LP3 distribution to the retained (n − r)

large values. Then for any large flood value q > qT , its non-exceedance prob-

ability is estimated as r/n plus (1− r/n) times the probability it would not

be exceeded given the distribution fit to the (n − r) retained observations.

Then for convenience and computation of confidence intervals, the 50, 90,

and 99 percentiles of that “probability-adjusted” distribution are computed

and used to compute the three parameters of a “synthetic” LP3 distribution

that is used to represent flood risk at the site. This procedure is relatively

robust, and has been shown to work well with zeros and low outliers Griffis

et al. (2004b).

EMA uses ranges and thresholds to describe historical flood information,

floods measured with limited precision, and PILFs. In particular, PILFs
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can be represented as being less than the smallest retained observation when

the LP3 distribution parameters are estimated. This allows EMA to address

a large range of circumstances, while appropriately representing all of the

available information. Censoring several of the smallest observations in a

sample results in almost no decrease of precision in flood quantile estimates

with EMA or with CPA (Griffis et al., 2004b). However, EMA can be much

more sensitive than CPA to PILFs that are not afforded special treatment.

Suppose a record had three low outliers, and we identified two. Then using

CPA, the value of the smallest two observations are completely ignored, and

the frequency-adjustment (CPA) corrects for omitting two observation in

the curve fitting step. Thus 66.7% of the low outliers have been dropped,

greatly reducing their impact. With EMA, if there are 3 low outliers and

two are identified, EMA represents the two smallest outliers as being less

than the third. This can make things worse.

Consider, for example, the Sacramento River 1-day flood record discussed

in Cohn et al. (2013, Figure 3) (reproduced here as Figure 1), which has

three small values that are each at least a factor of two smaller than the

other observations. The GBT identifies one low outlier in this case; MGBT

correctly identifies all 3, which can be seen immediately to be the most

reasonable decision. Because EMA in some sense takes the data seriously,

one needs to identify all of the PILFs to reliably avoid potential problems.

GB frequently fails to identify obvious outliers, other than the smallest flow.

Given the well understood sensitivity of the EMA method to low outliers, no

EMA/GB combination is considered in this report. EMA does not perform

reliably when paired with GB. As will be shown, the MGB outlier criterion
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Figure 1: One-Day Peak Floods from 1932-2008 Measured at Sacramento
River at Shasta Dam (Cohn et al., 2013, Figure 3)
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identifies obvious outliers and PILFs in the lower half of troublesome data

sets. As a result, as will be shown here, both B17B and EMA when used

with the MGB outlier identification procedure are reliable flood-quantile

estimators in terms of their ability to avoid problems caused by unusually

small peaks.

4.6 Estimation Methods Considered in this Report

Bulletin 17B (IACWD, 1982) procedures include a Grubbs-Beck (GB) out-

lier identification procedure, a weighted moment computation if a historical

record period is included with a perception threshold that was exceeded at

least once, use of a conditional probability adjustment (CPA) if a record

contains zero flows, low outliers, or peaks below gage-base, and finally com-

putation of a weighted skewness coefficient ((Griffis and Stedinger, 2007,

figure 2); (IACWD, 1982, pages 12-2 through 12-3)). All four of those steps,

as needed, are components of the flood frequency method denoted here as

B17B.

The proposal under consideration is to replace those procedures with the

multiple Grubbs-Beck (MGB) test for identification of low outliers (PILFs)

(Cohn et al., 2013), and the Expected Moments Algorithm (EMA) for the

estimation of the parameters of an LP3 distribution simultaneously con-

sidering zeros and low outliers as censored data, one or more periods with

different perception thresholds for historical floods, and a regional skew-

ness coefficient with specified mean square error (Cohn et al., 1997; Griffis

et al., 2004b). An advantage of the EMA approach is that all of the data

is treated consistently in a single parameter estimation step, rather than as
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a sequence of procedures that first address historical information, then ze-

ros and low outliers, and finally regional skew information (or the opposite

ordering of low outlier and historical adjustments when the skew coefficient

is less than −0.4). Uncertainty analysis of the B17B sequence of steps is

more difficult than that of the unified EMA procedure, and EMA, because

it allows simultaneous use of all of the data, is more efficient. For example,

an informative regional skew should be used to inform the interpretation

of historical and interval information, rather than being introduced as a

separate and independent final adjustment of just the skewness coefficient

as recommended by Bulletin 17B. The EMA algorithm also allows for dif-

ferent thresholds to describe historical information from different periods,

and the use of interval estimates of flood peaks to represent measurement

uncertainty, which is often appropriate when representing the magnitude of

historical flood information.

The studies that follow consider three estimation combinations:

1. EMA (Cohn et al., 1997) with a generalized multiple Grubbs-Beck test

(MGB) (Cohn et al., 2013) for detecting multiple potentially influential

low outliers in a flood series (EMA/MGB);

2. B17B (IACWD, 1982) with the standard Grubbs-Beck (GB) method

for identifying low outliers followed by the conditional probability ad-

justment (CPA) to address zeros, floods identified as low outliers, and

peaks below gage-base (B17B/GB); and

3. B17B where the new MGB was employed to identify multiple poten-

tially influential low floods followed by the conditional probability ad-
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justment (CPA) (IACWD, 1982) to address zeros, floods identified as

low outliers, and peaks below gage-base (denoted B17B/MGB).

4.7 Software

The USGS PEAKFQ version 7.0 program was used to create the compar-

isons between B17B and EMA estimates. PeakfqSA version 0.995, a devel-

opment version of PEAKFQ written by Tim Cohn, was used to check the

EMA results generated in PEAKFQ 7.0.

The Monte Carlo and resampling results reported in section 5 are based on

the underlying code employed in PEAKFQ, with analysis routines prepared

by Tim Cohn employing a front-end “driver” routine developed by Jery

Stedinger called “monte.f”

Results based on the Bulletin 17B Guidelines are referred to as “B17B” or

PEAKFQ/B17B. Results based on the proposed EMA methods are denoted

“EMA” or PeakfqSA. Additional letters are appended, yielding names of the

form “B17B/GB,” “B17B/MGB,” and “EMA/MGB,” to specify explicitly

which low-outlier test procedure was employed.
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5 Comparisons of Methods

Hundreds of distinct Monte Carlo and resampling experiments were con-

ducted, each involving 10000 replicate samples, in order to determine how

well the B17B/GB, B17B/MGB, and EMA/MGB estimators satisfy the cri-

teria listed in section 3. These Monte Carlo experiments are described in

this chapter.

5.1 Understanding the Graphical Presentation of Results

In order to simplify the discussion, comparisons between estimators for cases

with different historical information are presented concisely using a single

graphical format. Each figure considers the performance of the estimators

when data are drawn from a specific population. Figure 2, for example,

corresponds to an LP3 distribution with a log-skew γ = 0.0; Later graphs

consider estimator performance when data are drawn from other popula-

tions.

Each graphic has two parts. The top panel contains 12 boxplots (Tukey,

1977), divided into four groups of three, showing the distribution of three es-

timators for Q1%, the 1%-exceedance event (i.e., the ”100-year flood”). The

central colored rectangle spans the 25th to 75th percentiles of the estimators’

distributions. The central line indicates the median. Additional informa-

tion about the distribution of the estimations is shown by the whiskers and

hinges. The whisker length is 1.5 times the interquartile range. Observa-

tions beyond the whiskers are plotted as individual circles. For those cases

where the population mean is known, an additional symbol is present on
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each box, a circle with a cross, which indicates the location of the mean.

The three estimators are defined below and in IACWD (1982), Cohn et al.

(1997), Griffis et al. (2004a) and Cohn et al. (2013). Although flood quantiles

other than the 1% exceedance were investigated, the results were found to

be insensitive to which quantile was considered. Because Q1% is the flood

of interest for many federal activities, this case is reported.

Each of the four groups corresponds to NS = 40 years of systematic data.

The first group involves no historical information (E[H] = 0). The other 3

have a NH = 100 year historical period during which different perception

thresholds are set so that, in expectation, 1, 2 or 10, historic floods would

have been recorded. The red dashed line indicates the true value of Q1%,

where it is known; in some later plots, where Q1% is estimated by interpola-

tion between real observations, a purple line is used to indicate an estimate

of Q1% because the true value of Q1% is unknown.

The colored dots appearing in the lower panel in each graph indicates the

effective record length (ERL) of each estimator. ERL is defined in this case,

where NS = 40 and NH = 100, as the ratio:

ERL ≡ NS{
MSE[log(Q̂1%(NS = 40, NH = 0))]

MSE[log(Q̂1%(NS = 40, NH = 100))]
} (1)

where NS is the length of the systematic record, NH is the length of the

historical period, and

MSE[log(Q̂1%(NS , NH))] ≡ (Bias[log(Q̂1%(NS , NH))])2 +

Var[log(Q̂1%(NS , NH))] (2)
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ERL expresses, in a rough way, how well an estimator exploits historical

information by expressing its effect in terms of an equivalent number of years

of exclusively systematic data. Note that the estimator variance, denoted

Var in equation 2, is simply the variance of the 10000 replicate estimates of

Q̂1%. The Bias, however, is not always so easily defined. Where the flood

distribution is known, the Bias is defined in the conventional manner as the

average difference between Q̂1% and the true mean. When dealing with real

data (e.g. in section 6), however, the true value Q1% is not known. In these

cases, for want of a better assumption, Bias is assumed to be zero for all

estimators. Thus, the ERL is computed using only the estimated variance.

The bottom left-most box contains three numbers in lavender. These are,

respectively, the percentage of observations identified as low outliers (PILFs)

by the Grubbs-Beck test with Bulletin 17B (B17B/GB), the multiple Grubbs-

Beck test with Bulletin 17B (B17B/MGB), and the multiple Grubbs-Beck

test with EMA (B17B/MGB). The number of low outliers with B17B/MGB

and EMA/MGB are in fact always identical because the tests do not depend

on the fitting procedure.

The triplets of black numbers in the three boxes to the right indicate the

average gain (AG), in percent, associated with each year of historical flood

information, for B17B/GB, B17B/MGB and EMA/MGB, respectively. The

AG quantifies the relative value of an additional year of historical informa-

tion to an additional year of systematic gage record, and is defined as:

AG ≡ 100(
ERL−NS

NH
) (3)
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AG is the percentage increase of ERL for each year in the historical period.

Where the expected number of historic floods is high – on the right side of

the graph – the AG is typically also high. Where no historic floods can be

expected – the group on the left – the average gain is zero. 1.

The three colored circles in the bottom box represent indicate the ERL

corresponding to each estimator and censoring threshold.

1Note: AG results are based on 10000 replicate samples, and have a corresponding
uncertainty of about 1%
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5.2 Studies with LP3 Distribution

Figures 2 through 4 correspond to the case where we are fitting the LP3

distribution to LP3 data assuming we have no regional information. In these

cases we expect good results for all the estimators because we are applying

the correct model for the population from which the data are drawn. The

distribution of the Monte Carlo population, depicted as a frequency plot and

as a probability density function of the logarithm of Q, appears below the

main plot. Cases with regional skew information are addressed in Section

5.3.

Figure 2, depicts the case when the population skew, γ, is zero and low

outliers are rare. The figure shows that the 3 estimators are identical when

there is no historical information (the left-most three boxplots). If histor-

ical information is present with a perception threshold at approximately

the 1% exceedance flood level (Stedinger and Cohn, 1986), the EMA/MGB

(AG=39) method performs substantially better than B17B/GB (AG=27)

or B17B/MGB (AG=29). The same conclusion applies when the thresh-

old is at the 2% exceedance level, where the average gains are 42, 44, 53 for

B17B/GB, B17B/MGB, and EMA/MGB, respectively. When the threshold

is at the 10% exceedance level, which corresponds to a rare situation, all of

the estimators perform extremely well, with average gains of 77, 80, 72.

Figure 3 depicts the case when the population skew is γ = −0.5. In this

case many low outliers are to be expected. Figure 3 reveals several inter-

esting properties of the estimators. First, the center of the boxplots are

substantially above the hashed line (the true 1% exceedance level), indi-
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Figure 2: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from a Log-Pearson Type 3 distribution
with skew γ = 0.0.
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cating that all of the estimators are biased upward when only systematic

data are employed. This phenomenon is actually well known (Kirby, 1974;

Stedinger et al., 1993): The method-of-moments estimator for the skew coef-

ficient is biased toward zero, and thus method-of-moments quantile estima-

tors are biased upwards for populations with negative skews and downwards

for populations with positive skews (see figure 4). When historical informa-

tion is present, the EMA/MGB method performs substantially better than

B17B/GB or B17B/MGB.

Figure 4 depicts the case when the population skew is γ = 0.5 and no low

outliers are to be expected. This case reveals the opposite bias seen in figure

3. However, in this case all of the estimators make good use of the historical

information because, for positively skewed populations, the smaller values in

the dataset have little impact on the sample moments and therefore do not

influence the results regardless of which estimator is employed. In figures 2

and 4 with H = 10 expected floods, both B17B estimators do a little better

than EMA, though visually the boxplots are indistinguishable. In all other

cases EMA did essentially as well as the B17B estimators.

5.3 Studies with LP3 Distribution and Regional Skew

Figures 107 - 109 show the same cases as figures 2 - 4 except that regional

skew information has been added. Synthetic regional skews are modeled

and generated as normal variate with a mean of the observed skew and

a variance of 0.15 – a typical value consistent with Bayesian/GLS skew

maps (Lamontagne et al., 2012; Parrett et al., 2011; Gotvald et al., 2006).

The addition of regional skew information improves all of the estimators,
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Figure 3: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from a Log-Pearson Type 3 distribution
with skew γ = −0.5.
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Figure 4: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from a Log-Pearson Type 3 distribution
with skew γ = 0.5.
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including EMA/MGB and B17B/GB. The impact is essentially the same for

all of the estimators and most pronounced for the negative skew example.

In conclusion, while accurate regional skew is a valuable addition to fre-

quency analyses, it does not need to be considered as an important factor in

determining the relative performance of the three estimators. For the cases

with historical information where 1 or 2 historical floods are expected, again

EMA provides more precise quantile estimators than the B17B estimators.

For the case where 10 historical floods are expected and γ = 0.5, there is

a virtual tie; when γ = 0.5 and γ = 0 (figures 107-108), B17B/MGB does

a little better than EMA, while B17B/GB does slightly better only when

γ = 0 (figure 107). However, it is noteworthy that the value of historical

information, when carefully employed with EMA (see figure 2), ranges from

an average gain of 39% when 1 historical flood is expected, to 72% when

when 10 historical floods are expected.

DRAFT 44 DRAFT



5.4 Robustness Studies

To test their robustness to data with different distributions, the three es-

timators, B17B/GB, B17B/MGB, and EMA/MGB, were applied to 6 test

curves. These are referred to as “robustness test curves 1-6.” The first two

of these test curves are based on LP3 data with different skew values, and are

similar to those discussed in section 5.2. Figures 110, 111 in the appendix

also depict these two test curves. The remaining 4 test curves are used to

test the performance of the three estimators, B17B/GB, B17B/MGB, and

EMA/MGB when applied to non-LP3 data.

There are an infinite number of distribution ”curves” that could be used

to test robustness. While these curves represent only a tiny portion of the

non-LP3 universe, they were chosen because it is believed they reflect at

least some of the non-LP3 populations that have been observed in practice.

For example, mixed populations may arise due to the existence of multiple

peak flow generating processes in a watershed.

5.4.1 Robustness with Respect to Pearson Type 3 Population

Figure 5 depicts the performance of the estimators when data are drawn

from a Pearson Type 3 (P3) population, not the LP3 (robustness test curve

3). As can be seen in the figure, the P3 has a substantially different shape

than the LP3. All of the estimators are biased when fitting this popula-

tion, as is expected because it is not the assumed population. However, the

EMA/MGB estimator does perform slightly better than the two other esti-

mators when historical information is present. In the absence of historical
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information, differences arise only due to outliers.

5.4.2 Robustness with Respect to Mixed Population Constructed

from Two LP3 Distributions

Figure 6 depicts the performance of the estimators when data are drawn

from robustness test curve 4, a mixed population created by choosing the

maximum of observations drawn from two different LP3 distributions, the

first with parameters

{M,S2, G} = {4.1212, 0.292, 1.00}

and the second with parameters

{M,S2, G} = {4.0900, 0.132, 0.15}

Without historical information, all three estimators are nearly identical.

When historical information is present, the estimators are no longer identical

with EMA/MGB performing slightly better.

5.4.3 Robustness with Respect to Population Constructed from

Two LP3 Distributions

Figure 7 depicts the performance of the estimators when data are drawn

from robustness test curve 5, a constructed population based on two LP3

distributions, the first with parameters

{M,S2, G} = {4.3438, 0.412,−1.00}
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Figure 5: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from robustness test curve 3.
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Figure 6: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from a mixed population based on robustness
test curve 4.
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and the second with parameters

{M,S2, G} = {4.3936, 0.502,−0.20}

The lower half of the distribution function employs the first parameters,

and the upper half is based on the second parameters. The two parent

distributions are spliced together at their shared median. Fitting data from

this population again tests the robustness of the estimators with a mis-

specified population, but this time when low outliers are present. Without

historical information, EMA/MGB and B17B/MGB are nearly identical,

and both perform better than B17B/GB. When historical information is

present, EMA/MGB performs much better than the other estimators.

5.4.4 Robustness with Respect to Population Constructed from

Two GEV Distributions

Figure 8 depicts the performance of the estimators when data are drawn from

robustness test curve 6, a constructed populations based on two Generalized

Extreme Value (GEV) distributions, the first with location, scale, and shape

parameters

{κ, α, ξ} = {0.08, 24326, 6378}

and the second with parameters

{κ, α, ξ} = {−0.55, 10000, 17330}
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Figure 7: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from robustness test curve 5.
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The lower three quarters of the distribution function employs the second

parameters, and the upper quarter is based on the first parameters. The

distributions have the same upper quartile, which is where they join. As

was seen in figure 7 and many other examples, when historical information

is present, EMA/MGB performs much better than the other estimators.
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Figure 8: Monte Carlo results based on 10000 replicate samples of size
NS = 40 and NH = 100 drawn from robustness test curve 6.
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6 Examples Based on Real Data at Selected Test

Sites

6.1 82 Example Test Sites

Eighty-two USGS streamflow-gaging (streamgages) stations were selected

by a subset of the HFAWG named the “Data Group.” The types of data

found at these sites are organized into four categories in this report:

1. Systematic Gage Data, no historical or low outlier data (26 sites);

2. Historical Data, possibly including high outliers (19 sites);

3. Low Outliers; no historical information (20 sites);

4. Low Outliers, Historical and/or High Outliers (17 sites).

These eighty-two sites include all of the sites used as examples in Bulletin

17B (B17B) were also included in this study. Clearly 82 sites is a limited

sample of the many thousands of streamgage records throughout the Nation.

However, the set is believed to cover the range of situations, and particularly

the most difficult situations, that arise in practice.

The respective estimated frequency curves for the sites are presented graph-

ically in appendix B. Because we do not know the true frequency curve,

judgments about the various estimates are necessarily subjective; graphs

provide a convenient way to visualize the differences. The magnitude of ob-

served differences, however, can be summarized in terms of a statistic, the
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relative percent difference (RPD), defined as:

RPD ≡ 100(
Q̂

EMA/MGB
p − Q̂B17B/∗

p

Q̂
B17B/∗
p

) (4)

where p corresponds to the quantile of interest andB17B/∗ refers toB17B/GB

or B17B/MGB, respectively, depending on which estimators are being com-

pared. Although the RPD does not tell us which estimator is better, it does

quantify the magnitude of observed differences between the estimators.

6.2 Sites with Systematic Gage Data and No Low Outliers

or Historical Information

The first category, “Gage Only” data, included 26 sites. The sites have

systematic data with no historical information, no below gage-base floods,

and no low outliers identified by either using the GB or MGB tests. Almost

all RPDs were zero, as expected. In this case all of the estimators are, in

theory, identical2. As can be seen in figure 9, however, there were two sites

where, in fact, the RPD was not zero.

At site 02037500, James River at Richmond (figure 29), the RPD ranged

between 3 to 5% for the 3 quantiles. This was because the 1937 peak dis-

charge was recorded with a qualification code indicating the discharge was

greater than the reported 152,000 [cfs] value. PEAKFQ/B17B, the USGS

software that implements Bulletin 17B, by default omitted the 1937 peak.

A user-supplied point discharge value of 152,000 [cfs] was instead used to

2Apparent differences between PEAKFQ/B17B and PeakfqSA results of less than 1%
in RPD occur because PEAKFQ/B17B rounds quantile estimates to between 2 and 3
significant digits; PeakfqSA does no rounding. The estimated moments, which are not
rounded, are identical in these cases
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Figure 9: Relative Percent Difference (RPD) for B17B/GB and EMA/MGB
estimators for 10%, 1%, and 0.2% exceedance probabilities. Includes 26 sites
without historical flood information where no low outliers were identified by
Grubbs-Beck tests.
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characterize the 1937 peak. This is a “known problem” with B17B, but

it bears repeating: PEAKFQ/B17B is not well adapted to incorporating

non-standard discharge values; in some cases the way it handles them is to

ignore them altogether. As a result, the PEAKFQ/B17B estimates, which

reflect B17B methods, do not properly employ the data.

EMA, the alternative method, does accommodate interval data. Thus the

1937 peak could be correctly described as inside an interval from 152,000

to infinity. This was used in the EMA analysis to capture the additional

information associated with the 1937 peak. Because EMA employs an inter-

val range greater than 152,000[cfs] for the large 1937 peak, EMA estimated

higher values for the upper portion of the frequency curve.

Site 05586500, Hurricane Creek near Roodhouse (figure 32), had a simi-

lar problem. It showed a RPD range from 4 to -20%. The sixth lowest

recorded discharge had a qualification code indicating the recorded value

was less than 70 [cfs]. PEAKFQ/B17B employed a gage base at 70 [cfs],

consequently omitting five additional recorded point discharge values below

70 [cfs]. No low outliers were identified by either the GB or MGB test. Thus

PEAKFQ/B17B unnecessarily truncated a portion of the left hand tail due

to the qualification code of one observation. A user-supplied interval dis-

charge range from 0 to 70 [cfs] was properly set in EMA for that single water

year, and the five recorded point discharges below 70 [cfs] were included in

the flood frequency analysis. Because EMA used all recorded discharges and

the 0 to 70 [cfs] censored data, EMA’s estimates were lower particularly at

the upper end of the curve.

In both cases where the estimates differed, it was because EMA can accom-
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modate data properly that PEAKFQ/B17B cannot accommodate.

6.3 Sites with Historical Information

The testing for the “Historical Data” category included 19 sites, some of

which included high outliers. The historical data sites illustrate a fundamen-

tal difference between EMA and B17B (Stedinger and Cohn, 1986; England

et al., 2003).

EMA estimates, and therefore the RPDs, are sensitive to the historic thresh-

old and historical period employed. All attempts were made to manually

enter the same values into both software programs. However, some adjust-

ments were made to accommodate PEAKFQ/B17B’s inability to use interval

discharge ranges. Many sites had one to three recorded historic peaks that

exceeded the historic threshold. A few sites had recorded gage heights at or

near the record value with missing discharges. Interval discharge values were

set in EMA to accommodate these observations; because PEAKFQ/B17B

has no corresponding capability, point discharge values were estimated by re-

lating log-space discharge to log-space gage height for those years and these

were entered into PEAKFQ/B17B with the use of similar historic thresholds.

Additionally, as a default, PEAKFQ/B17B sets an historic threshold at the

lowest recorded historic value for a user-specified historic period. Thus all

missing years of information in the historic record are effectively set to the

lowest historic threshold. If a systematic record is missing any discharges (a

broken systematic record) in a historical period, the missing data is set to

the same historic threshold. This is not the case if there is missing data in

a purely systematic record. PEAKFQ/B17B will assume no information is
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known about those missing years of systematic record.

Overall, the majority of sites with historical information showed a positive

RPD in the flood estimates (figure 10). The interquartile distances ranged

from approximately 0 to 10% for Q̂1%. Three sites had higher RPD for Q̂1%,

ranging from 11 to 37%. EMA and B17B provide substantially different

estimates for these three sites, all of which include historical information and

high outliers. Site 06216500, Pryor Creek near Billings, had one large flood

that was the largest in an extended historical period of 99 years. Figure

11 shows the frequency plots for both B17B and EMA. Based on visual

inspection of the frequency curves, EMA seems to provide better fit to the

data, most clearly to the high outlier in the right hand tail.

6.4 Sites with Systematic Gage Data and Low Outliers

The testing for the “Low Outliers” category utilized 20 sites with low outliers

identified using either the standard Grubbs-Beck (GB) test recommended by

B17B or the multiple Grubbs-Beck (MGB) test (Cohn et al., 2013). These

sites did not include historic data. Two sets of comparisons were made

between the results of EMA/MGB with:

1. B17B using the GB test followed by the conditional probability ad-

justment (CPA) (B17B/GB), and

2. B17B using the MGB identified low outlier threshold followed by the

CPA (B17B/MGB).

Current PEAKFQ/B17B software does not include a MGB test option, so,

where needed, the MGB threshold was computed independently and then
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Figure 10: Relative Percent Difference (RPD) for B17B/GB and
EMA/MGB estimators for 10%, 1%, and 0.2% exceedance probabilities.
Figure represents 19 sites with historical information where no low outliers
were identified by Grubbs-Beck tests.
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Figure 11: Pryor Creek near Billings, MT (06216500)
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entered into PEAKFQ as a user-supplied low outlier threshold.

The systematic flood series for site 08133500, North Concho River at Sterling

City, TX (Figure 75), included three peaks with a qualification code indicat-

ing the discharge was less than the reported value of 300 [cfs]. As discussed

in the systematic “Gage Only” section (6.2), PEAKFQ/B17B arbitrarily set

a gage base for the entire record, in this case omitting an additional 17 sys-

tematic point discharges less than 300 [cfs] that did not have remark codes.

In EMA, the 3 peaks were recoded as between 0 and 300 [cfs]. However, the

MGB test identified a low outlier threshold of 634 [cfs]. Thus EMA/MGB

identified 23 low outliers and B17B/GB (with a default-set gage base of

300 [cfs]) identified 20 low outliers. The result is that the estimated flood

quantiles do not differ by very much.

Flood estimate comparisons between EMA/MGB and B17B/GB for (fig-

ure 12) shows the median RPD is essentially zero. However, the RPD has

substantial variability, indicating that the B17B/GB and EMA/MGB es-

timators behave differently when low outliers are present. This increased

variability in RPD is attributed to the very different number of low outliers

identified in the flood series and the methods used to handle low outliers

in the frequency analysis, i.e., EMA’s low outlier censoring versus B17B’s

CPA. Of the 20 sites in this low outlier category, the GB test found only 0

to 2 low outliers per site above gage base, while the MGB test found 1 to 46

low outliers (figure 13) At some sites, the MGB identified nearly 50% of the

recorded floods (figure 14) as “low outliers.” This is the upper bound on

the percentage of peaks that MGB will test and designate as low outliers.
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Figure 12: Relative Percent Difference (RPD) for B17B/GB, B17B/MGB,
and EMA/MGB estimators for 10%, 1%, and 0.2% exceedance probabilities.
Figure represents 20 sites where low outliers were identified by Grubbs-
Beck(GB) or generalized Grubbs-Beck (MGB), and no historical informa-
tion.
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Figure 13: Number of floods identified as low outliers or below gage-base
using the standard Grubbs-Beck (GB) and generalized Grubbs-Beck (MGB)
tests. Figure represents 20 sites without historical information.
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Figure 14: Percent low outliers identified using the generalized Grubbs-Beck
(MGB) test. Figure represents 20 sites without historical information.
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The observed RPDs were both positive and negative, a result of complex in-

teractions between different low-outlier tests and different fitting procedures.

However, use of the EMA/MGB method seems to produce a better fit to

the upper portion of the frequency curve than is obtained with B17B/GB.

Orestimba Creek near Newman (site 11274500, figure 15), which is also

presented in B17B, represents an extreme case of low outliers – a flood series

of 79 years including 11 zero floods. The LP3 distribution cannot describe

the full range of observed flood flows at this site because the support for the

LP3 distribution vanishes for Q ≤ 0 (Cohn et al., 2013). PEAKFQ/B17B

treats all zero flows as below gage base, while EMA regards them as ordinary

low outliers.

The Grubbs-Beck (GB) test yields a low-outlier threshold of 10.8 [cfs] and

identification of a single additional low outlier. The MGB test, in contrast,

yields a low outlier threshold of 782 [cfs], identifying 29 peaks, or 37% of the

data, as low outliers. The RPD between EMA/MGB and B17B/GB ranges

from 9% to 21% for the 1%, and 0.2% exceedance probability estimates,

respectively (figure 15).

It is interesting to note that B17B/MGB, while close to EMA/MGB in this

case, provides a different and much poorer fit to the data, as can be seen in

figure 15. The B17B/MGB curve lies above the data for exceedance prob-

abilities between 40-50%, and below the data for exceedance probabilities

between 10-40%. Above the 10% level, the B17B/MGB curve rises more

sharply than the EMA/MGB curve, which appears to match the concave

downward trend in the data.
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Figure 15: Orestimba Creek near Newman, CA (11274500), fit after appli-
cation of the multiple Grubbs-Beck (MGB) test for low outliers.
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The pattern seen at Orestimba is also observed at other sites with multiple

low outliers. For example, at Santa Cruz River near Lochiel, AZ (09480000,

figure 16) one sees that EMA/MGB, by treating the influential small peaks

as low outliers, results in a reasonably close fit in the right-hand tail. On

the other hand, the B17B/GB estimator generates a frequency curve that is

greatly exceeded by two of the sample values.

6.5 Sites with Low Outliers, Historical and/or High Outliers

Seventeen of the 82 sites included the combination “Low Outlier, Historical

and/or High Outlier.” This category contains sites whose flood series have

low outliers with

1. High outliers in a systematic record, or

2. High outliers in a historical period.

Nothing fundamentally new appeared in these cases. The RPD between

EMA/MGB and B17B/GB are similar to those found in both the “Low

Outlier” and “Historical” categories. The median RPD for the Q̂10% esti-

mates remained near zero while and the median RPD were slightly positive

for the Q̂1% and Q̂0.2% estimates (figure 17). About a third of the sites in

this category showed a RPD greater than 15% for the 0.2% estimates and

three sites were less than 18%. The largest RPD between EMA/MGB and

B17B/GB was found at site 11176000, Arroyo Mocho near Livermore, CA.

The RPDs for the estimates were between -48 and -68%, for the Q̂1% and

Q̂0.2% , respectively. EMA/MGB found 19 low outliers in the systematic

record (figure 18) while B17B/GB found only one low outlier above gage
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Figure 16: Santa Cruz River near Lochiel, AZ (09480000)
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Figure 17: Relative Percent Difference (RPD) for B17B/GB, B17B/MGB,
and EMA/MGB estimators for 10%, 1%, and 0.2% exceedance probabilities.
Represents 17 sites with historical flood information where low outliers were
identified by the Grubbs-Beck (GB) or multiple Grubbs-Beck (MGB) test.
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Figure 18: Arroyo Mocho near Livermore, CA (11176000)
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base. Additionally, one historic peak was recorded in the flood series. By

censoring multiple low outliers, EMA/MGB more accurately fit the right-

hand tail.

A large positive RPD between EMA/MGB and B17B/GB was found at site

06062500, Tenmile Creek near Rimini, MT. A 10 and 19% RPD difference

was found for the Q̂1% and the Q̂0.2% estimates, respectively. EMA/MGB

found 2 low outliers, while B17B/GB found none (figure 19). Here EMA

seems to provide a fit that is more consistent with the trends exhibited by

the largest 7 observations.

Figures 18 and 19 illustrate an important point: Both B17B/GB and EMA/MGB

often provide a good fit to the data they employ. However, B17B/GB can

be highly influenced by PILFs with the result being a poor fit at the high

end of the distribution. EMA/MGB, on the other hand, avoids this problem

by identifying and recoding PILFs so that their exact magnitudes do not

distort the fit in the right-hand tail.

The RPD between EMA/MGB and B17B/MGB when a flood series has

both low and high outlier data is similar to that found when only low out-

liers are present. The median value and interquartile range for the estimates

in the “combination category” was slightly positive while the median values

and interquartile ranges for the estimates in the “low outlier” category were

slightly negative. As expected, the variance in the RPD was minimized for

all estimates when the same low outlier threshold was used. The higher esti-

mate from B17B/MGB is illustrated by figure 18 (11176000, Arroyo Mocho

near Livermore, CA) where a -21% RPD difference for the Q̂1% was found.

The MGB low outlier threshold of 106 [cfs] was used in B17B/MGB. The
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Figure 19: Ten Mile Creek near Rimini, MT (06062500)
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MGB test identified almost 33% of the peaks as low outliers. Using the same

MGB test, based on visual inspection, EMA/MGB and B17B/MGB both

show an improved fit versus B17B/GB.

6.6 Resampling Studies

Figures 20 - 24 depict results from applying the three estimators, B17B/GB,

B17B/MGB, and EMA/MGB, to resampled data from five of the longest-

record (> 100 observations) sites among the 82 “test” sites considered in

section 6. In these cases, we do not know what the true value of the 1% ex-

ceedance event is, so the figures instead employ an interpolated value based

on the two largest observations in the dataset. However, this is an unreli-

able estimator; as noted in section 6.7, many of the “test” sites were selected

specifically because they contained high outliers. In reviewing figures 20 -

24, it is likely best to use one’s judgement about the reasonableness of the

results, possibly referring back to the test-site results, rather than trying to

conjure up a strict quantitative assessment. However, it is noteworthy that,

when historical information is present, the EMA/MGB estimator generally

outperforms the other estimators in terms of ERL, with site 03011020 in

figure 20 being an exception.

6.7 Summary

82 streamflow-gaging stations were chosen as a representative sample of long-

term sites whose flood series include a variety of situations and problems that

are believed to be found throughout the U.S. The flood data was divided

into four categories:
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Figure 20: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Historical” category site 03011020.
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Figure 21: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Low Outlier” category site 11152000.
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Figure 22: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Gage Only” category site 14048000.
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Figure 23: Results based on resampled data, NS = 40 and NH = 100, drawn
from observed discharges at “Low Outlier” category site 14321000.
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Figure 24: Results based on resampled data drawn from observed discharges
at “Combination” category site 13185000.
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1. Systematic Gage Data, no low outliers or historical information,

2. Historical and/or High outliers,

3. Low Outliers, and

4. Low Outliers, with Historical and/or High Outliers.

The performance of EMA/MGB, B17B/GB and B17B/MGB methods were

compared visually for each of the sites, and a relative percent difference

(RPD) statistic was calculated corresponding to each of three exceedance

probabilities to compare the EMA and B17B estimates.

When only systematic flood data were present, identical flood estimates

(RPD equal to zero) were obtained except for those cases where B17B cannot

accommodate non-standard data correctly. When historical and/or high

outliers were present, observed RPDs were positive more than half the time.

This is at least in part due to the 82 sites that were selected for testing,

many of which included historical “high outliers.” EMA tends to attach

more “weight” to historical flood information than does B17B (Stedinger

and Cohn, 1987), so where the historical period includes an unusually high

peak, the EMA/MGB estimate will tend to be higher than the B17B/GB

estimate.

Flood series that contain multiple low outliers exhibited a range of results

primarily due to the very different number of low outliers identified by the

GB and MGB tests and the methods used to handle low outliers in the

frequency analysis, i.e., EMA’s censoring versus B17B’s CPA. When the

same low outlier threshold was used for the EMA and B17B’s CPA fitting
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procedure, the RPDs were usually smaller and negative. For those sites

with low outliers with historical, and/or high outlier data, similar RPD were

found to those in the historical and low outlier categories. This combination

group included both low outliers and high outliers. The RPD were notably

more positive for these estimates.

EMA/MGB generally identified more low outliers, when low outliers were

present. In these cases, based on subjective assessment EMA/MGB always

provided a closer fit to the largest peaks in the dataset.

Additional studies were conducted that involved resampling data from sites

with the longest records. Although the true value of the 1% exceedance

event is not known for these sites, the resampling experiments confirmed

that the EMA/MGB estimator performed reasonably well in all cases and

generally provided higher average gains than the alternative estimators.
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7 Conclusions

The study reported here was designed to determine how well proposed

changes to Bulletin 17B would perform in practice compared to the current

recommendations in Bulletin 17B. In particular, the investigations focused

on techniques for:

• Incorporating information related to historical flooding that occurred

outside the period of systematic streamgaging;

• Addressing the identification and treatment of PILFs (zero flows and

low outliers);

In order to answer these questions, Monte Carlo studies were conducted by

resampling from real records, or drawing random samples from specified LP3

and non-LP3 distributions. In addition, problematic datasets from across

the country were selected to serve as test cases for comparing the estimators.

To summarize, results are presented for:

• Monte Carlo simulations employing data drawn from specific LP3 pop-

ulations;

• Monte Carlo simulations employing data drawn from non-LP3 pop-

ulations that were selected to reflect likely deviations, based on the

experience of the Data Group, from the hypothesized LP3 distribu-

tion;

• A direct subjective comparison of results at 82 real “test sites” identi-

fied by an independent Data Group as both “typical” and “challeng-

ing” for flood frequency estimation;
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• Resampling with replacement of the data at the 82 sites.

It is believed that, taken together, these studies provide a reasonably com-

prehensive, valid and robust assessment of the properties of the Bulletin 17B

procedures and proposed extensions and improvements.

The results demonstrate that the proposed alternative method, denoted

EMA/MGB:

• Generally performs at least as well as, and in some cases much better

than, Bulletin 17B procedures in terms of the Mean Square Error

(MSE) of flood quantile estimates;

• Allows for incorporation of more general types of flood-frequency infor-

mation, thereby voiding some annoying problems that arise when ap-

plying Bulletin 17B in practice with datasets containing non-standard

flood data (exceedances of thresholds, and “less-than” values).

In summary, the results here generally confirmed other studies published

in the hydrological literature that have found that EMA generally provides

improved flood frequency estimates.
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A Appendix: Characteristics of 82 Test Sites

DRAFT 83 DRAFT



T
ab

le
2:

C
h

ar
ac

te
ri

st
ic

s
of

at
-s

it
e

st
re

am
fl

ow
re

co
rd

s
u
se

d
in

co
m

p
ar

in
g

B
u

ll
et

in
17

B
an

d
E

M
A

es
ti

m
at

or
s.

D
A

d
ra

in
ag

e
ar

ea
in

sq
u

ar
e

m
il

es
;

N
P
k

n
u

m
b

er
of

p
ea

k
s;

N
S

n
u

m
b

er
of

sy
st

em
at

ic
p

ea
k
s;

N
0

n
u

m
b

er
of

ze
ro

p
ea

k
s;

N
H

le
n

gt
h

of
h

is
to

ri
ca

l
p

er
io

d
;

N
Z

n
u

m
b

er
of

h
is

to
ri

c
p

ea
k
s;

n
,

J
r.

,

Q
g
d

ga
ge

b
as

e
d

is
ch

ar
ge

(c
fs

);

N
<
g
d

n
u

m
b

er
of

p
oi

n
t

d
is

ch
ar

ge
va

lu
es

b
el

ow
ga

ge
b

as
e;

Q
G
B

G
ru

b
b

s-
B

ec
k

cr
it

ic
al

va
lu

e
(c

fs
)–

lo
w

-o
u

tl
ie

r
cr

it
e-

ri
on

;

N
G
B

n
u

m
b

er
of

lo
w

ou
tl

ie
rs

id
en

ti
fi

ed
u

si
n

g
G

ru
b

b
s-

B
ec

k
te

st
;

N
M

G
B

n
u

m
b

er
of

lo
w

ou
tl

ie
rs

id
en

ti
fi

ed
u

si
n

g
m

u
lt

ip
le

G
ru

b
b

s-
B

ec
k

te
st

S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

1
01

07
65

00
P

em
ig

ew
as

se
t

R
iv

er
at

P
ly

-

m
ou

th
,

N
H

62
2

10
6

10
6

0
10

6
0

0
0

63
16

.7
0

0

2
01

35
00

00
S

ch
oh

ar
ie

C
re

ek
at

P
ra

tt
sv

il
le

,
N

Y

23
7

10
0

99
0

10
6

1
0

0
20

64
0

0

DRAFT 84 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

3
01

43
95

00
B

u
sh

K
il

l
at

S
h

o
em

ak
er

s,

P
A

11
7

10
2

10
2

0
10

2
0

0
0

42
7.

5
0

0

4
01

55
55

00
E

as
t

M
ah

an
ta

n
go

C
re

ek

n
ea

r
D

al
m

at
ia

,
P

A

16
2

81
81

0
81

0
0

0
78

4.
9

0
0

5
01

56
20

00
R

ay
st

ow
n

B
ra

n
ch

J
u

n
ia

ta

R
iv

er
at

S
ax

to
n

,
P

A

75
6

99
98

0
12

2
1

0
0

29
77

0
0

6
01

63
55

00
P

as
sa

ge
C

re
ek

n
ea

r
B

u
ck

-

to
n

,
V

A

86
.5

78
78

0
78

0
0

0
26

7.
5

0
0

7
01

63
65

00
S

h
en

an
d

oa
h

R
iv

er
at

M
il

-

lv
il

le
,

W
V

30
41

97
95

0
14

1
2

0
0

41
78

.7
0

0

8
01

66
80

00
R

ap
p

ah
an

n
o
ck

R
iv

er
n

ea
r

F
re

d
er

ic
k
sb

u
rg

,
V

A

15
95

10
0

10
0

0
10

3
0

0
0

52
09

.8
1

2

9
02

03
75

00
J
am

es
R

iv
er

n
ea

r
R

ic
h

-

m
on

d
,

V
A

67
53

76
76

0
76

0
0

0
14

96
5.

1
0

0

DRAFT 85 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

10
02

13
85

00
L

in
v
il

le
R

iv
er

n
ea

r
N

eb
o,

N
C

66
.7

89
88

0
95

1
0

0
46

1.
7

0
0

11
02

25
65

00
F

is
h

ea
ti

n
g

C
re

ek
at

P
al

m
-

d
al

e,
F

L

31
1

79
79

0
79

0
0

0
22

7.
9

0
0

12
03

01
10

20
A

ll
eg

h
en

y
R

iv
er

at
S

al
a-

m
an

ca
,

N
Y

16
08

10
7

10
7

0
14

6
0

0
0

85
02

.9
0

0

13
03

05
10

00
T

y
ga

rt
V

al
le

y
R

iv
er

at
B

el
-

in
gt

on
,

W
V

40
6

10
4

10
3

0
12

3
1

0
0

39
92

.9
0

0

14
03

15
95

00
H

o
ck

in
g

R
iv

er
at

A
th

en
s,

O
H

94
3

78
77

0
13

7
1

0
0

36
55

.4
0

0

15
03

18
35

00
G

re
en

b
ri

er
R

iv
er

at
A

ld
er

-

so
n

,
W

V

13
64

11
5

11
5

0
11

5
0

0
0

10
19

0.
8

0
0

16
03

28
95

00
E

lk
h

or
n

C
re

ek
n

ea
r

F
ra

n
k
-

fo
rt

,
K

Y

47
3

72
70

0
94

2
0

0
30

50
.9

1
6

DRAFT 86 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

17
03

34
55

00
E

m
b

ar
ra

s
R

iv
er

at
S

te
.

M
ar

ie
,

IL

15
16

99
99

0
10

1
0

0
0

16
98

.2
1

3
4

18
03

55
00

00
V

al
le

y
R

iv
er

at
T

om
ot

la
,

N
C

10
4

10
1

10
0

0
11

3
1

0
0

86
2.

1
0

0

19
03

55
80

00
T

o
cc

oa
R

iv
er

n
ea

r
D

ia
l,

G
A

17
7

85
84

0
15

7
1

0
0

10
22

.6
0

0

20
03

60
65

00
B

ig
S

an
d

y
R

iv
er

at
B

ru
ce

-

to
n

,
T

N

20
5

70
67

0
11

4
3

0
0

70
4.

3
0

0

21
04

29
35

00
M

is
si

sq
u

oi
R

iv
er

n
ea

r
E

as
t

B
er

k
sh

ir
e,

V
T

47
9

92
91

0
18

0
1

0
0

43
28

.8
0

0

22
05

27
05

00
S

au
k

R
iv

er
n

ea
r

S
t.

C
lo

u
d

,

M
N

10
30

75
75

0
10

1
0

0
0

15
2.

1
1

1

23
05

29
10

00
W

h
et

st
on

e
R

iv
er

n
ea

r
B

ig

S
to

n
e

C
it

y,
S

D

39
8

83
83

0
10

1
0

0
0

23
.4

0
2
9

24
05

46
45

00
C

ed
ar

R
iv

er
at

C
ed

ar

R
ap

id
s,

IA

65
10

10
9

10
8

0
31

1
1

0
0

31
87

.3
0

5

DRAFT 87 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

25
05

57
20

00
S

an
ga

m
on

R
iv

er
at

M
on

ti
-

ce
ll

o,
IL

55
0

10
1

10
1

0
10

3
0

0
0

75
5.

6
1

1

26
05

58
65

00
H

u
rr

ic
an

e
C

re
ek

n
ea

r

R
o
o
d

h
ou

se
,

IL

2.
3

45
44

0
45

1
70

6
38

0
0

27
06

06
25

00
T

en
m

il
e

C
re

ek
n

ea
r

R
im

in
i,

M
T

30
.9

94
94

0
10

3
0

0
0

28
.1

0
2

28
06

17
65

00
W

ol
f

C
re

ek
n

ea
r

W
ol

f

P
oi

n
t,

M
T

25
1

37
37

0
84

0
0

0
0.

5
0

7

29
06

21
65

00
P

ry
or

C
re

ek
n

ea
r

B
il

li
n

gs
,

M
T

44
0

49
48

0
99

1
0

0
10

1.
6

0
0

30
06

40
60

00
B

at
tl

e
C

r
at

H
er

m
os

a,
S

D
17

8
61

61
0

61
0

0
0

1.
8

0
0

31
06

60
05

00
F

lo
y
d

R
iv

er
at

J
am

es
,

IA
88

6
76

76
0

11
9

0
0

0
28

2.
2

0
0

32
06

71
05

00
B

ea
r

C
re

ek
at

M
or

ri
so

n
,

C
O

16
4

98
98

0
12

0
0

0
0

19
.3

0
0

DRAFT 88 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

33
06

89
70

00
E

as
t

F
or

k
B

ig
C

re
ek

n
ea

r

B
et

h
an

y,
M

O

95
53

52
0

77
1

0
0

37
6.

2
1

6

34
06

89
80

00
T

h
om

p
so

n
R

iv
er

at
D

av
is

C
it

y,
IA

70
1

80
79

0
12

6
1

0
0

11
71

.9
0

0

35
06

93
35

00
G

as
co

n
ad

e
R

iv
er

at

J
er

om
e,

M
O

28
40

92
88

0
11

4
4

43
20

1
43

69
.7

0
1
8

36
07

06
70

00
C

u
rr

en
t

R
iv

er
at

V
an

B
u

-

re
n

,
M

O

16
67

99
98

0
10

7
1

0
0

25
36

.9
0

0

37
07

13
86

00
W

h
it

e
W

om
an

C
T

r
n

ea
r

S
el

k
ir

k
,

K
S

38
39

39
4

54
0

0
0

2.
5

0
1
2

38
07

20
30

00
V

er
m

ej
o

R
iv

er
n

ea
r

D
aw

-

so
n

,
N

N

30
1

76
76

0
81

0
0

0
59

.7
1

6

39
07

20
85

00
R

ay
ad

o
C

re
ek

n
ea

r
C

im
ar

-

ro
n

,
N

N

65
86

86
0

96
0

0
0

7
0

0

DRAFT 89 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

40
07

38
20

00
B

ay
ou

C
o
co

d
ri

e
n

ea
r

C
le

ar
-

w
at

er
,

L
A

24
0

72
72

0
88

0
0

0
27

2.
6

0
0

41
08

13
35

00
N

C
on

ch
o

R
v

at
S

te
rl

in
g

C
it

y,
T

X

58
8

65
65

0
68

0
30

0
20

13
0.

7
0

2
3

42
08

15
00

00
L

la
n

o
R

v
n

ea
r

J
u

n
ct

io
n

,

T
X

18
54

91
91

0
95

0
0

0
34

.4
0

1
6

43
08

16
40

00
L

av
ac

a
R

v
n

ea
r

E
d

n
a,

T
X

81
7

73
72

0
75

1
0

0
73

4.
7

1
1

44
08

16
70

00
G

u
ad

al
u

p
e

R
v

at
C

om
fo

rt
,

T
X

83
9

76
72

0
16

3
4

0
0

10
4.

9
0

0

45
08

17
10

00
B

la
n

co
R

v
at

W
im

b
er

le
y,

T
X

35
5

87
86

0
14

2
1

0
0

57
.6

1
2
7

46
08

18
95

00
M

is
si

on
R

v
at

R
ef

u
gi

o,
T

X
69

0
71

71
0

71
0

0
0

65
.9

1
1
2

47
08

37
85

00
P

ec
os

R
iv

er
n

ea
r

P
ec

os
,

N
M

18
9

87
85

0
90

2
0

0
70

.3
0

0

DRAFT 90 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

48
08

38
05

00
G

al
li

n
as

C
re

ek
n

ea
r

M
on

-

te
zu

m
a,

N
M

84
93

93
0

95
0

0
0

16
.2

0
0

49
08

38
70

00
R

io
R

u
id

os
o

at
H

ol
ly

w
o
o
d
,

N
M

56
12

0
56

57
0

0
0

0
19

.1
0

0

50
09

24
10

00
E

lk
R

iv
er

at
C

la
rk

,
C

O
21

6
78

78
0

93
0

0
0

10
25

.5
0

2
2

51
09

36
15

00
A

n
im

as
R

iv
er

at
D

u
ra

n
go

,

C
O

69
2

10
2

10
2

0
11

3
0

0
0

13
74

.4
1

2

52
09

47
10

00
S

an
P

ed
ro

R
iv

er
at

C
h

ar
le

st
on

,
A

Z

12
34

95
95

0
10

5
0

0
0

49
0.

9
1

3

53
09

48
00

00
S

an
ta

C
ru

z
R

iv
er

n
ea

r

L
o
ch

ie
l,

A
Z

82
.2

62
62

0
62

0
0

0
10

.1
2

8

54
09

48
25

00
S

an
ta

C
ru

z
R

iv
er

at
T

u
c-

so
n

,
A

Z

22
22

94
93

0
11

9
1

0
0

55
9.

6
0

0

55
10

12
85

00
W

eb
er

R
iv

er
n

ea
r

O
ak

le
y,

U
T

16
2

10
5

10
5

0
10

6
0

0
0

57
9.

8
0

0

DRAFT 91 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

56
10

23
45

00
B

ea
ve

r
R

iv
er

n
ea

r
B

ea
ve

r,

U
T

91
97

97
0

97
0

0
0

40
.4

0
4
5

57
11

02
85

00
S

an
ta

M
ar

ia
C

n
ea

r
R

a-

m
on

a,
C

A

57
.6

71
71

11
97

0
0

0
0

1
1
3

58
11

15
20

00
A

rr
oy

o
S

ec
o

n
ea

r
S

ol
ed

ad
,

C
A

24
4

10
5

10
5

0
10

5
0

0
0

44
7.

9
0

4
6

59
11

17
60

00
A

rr
oy

o
M

o
ch

o
n

ea
r

L
iv

er
-

m
or

e,
C

A

38
.2

57
56

1
89

1
0

0
2.

4
1

1
9

60
11

26
65

00
M

er
ce

d
R

A
P

oh
on

o
B

ri
d

ge

n
r

Y
os

em
it

e,
C

A

32
1

94
94

0
94

0
0

0
81

9.
6

0
0

61
11

27
45

00
O

re
st

im
b

a
C

n
ea

r
N

ew
-

m
an

,
C

A

13
4

79
79

11
79

0
0

0
10

.8
1

2
9

62
11

38
35

00
D

ee
r

C
n

ea
r

V
in

a,
C

A
20

8
94

94
0

99
0

0
0

52
1.

4
1

1

63
11

46
45

00
D

ry
C

n
ea

r
C

lo
v
er

d
al

e,
C

A
87

.8
40

39
0

43
1

0
0

69
3.

5
1

1
5

DRAFT 92 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

64
11

52
25

00
S

al
m

on
R

A
S

om
es

B
ar

,

C
A

75
1

86
86

0
99

0
0

0
19

23
.5

1
1

65
12

03
95

00
Q

u
in

au
lt

R
iv

er
at

Q
u

in
au

lt

L
ak

e,
W

A

26
4

97
96

0
10

1
1

0
0

91
62

.2
0

4
7

66
12

13
45

00
S

k
y
ko

m
is

h
R

iv
er

n
ea

r
G

ol
d

B
ar

,
W

A

53
5

82
82

0
82

0
0

0
22

27
.9

1
0

67
12

30
75

00
M

oy
ie

R
iv

er
at

E
il

ee
n

,
ID

75
5

53
53

0
53

0
0

0
62

20
.4

0
1
2

68
12

41
30

00
N

f
C

o
eu

r
D

A
le

n
e

R
iv

er
at

E
n

av
il

le
,

ID

89
5

74
71

0
99

3
0

0
32

71
.3

0
0

69
12

41
45

00
S

t
J
o
e

R
iv

er
at

C
al

d
er

,
ID

10
30

92
92

0
10

0
0

0
0

43
10

.5
0

0

70
12

43
79

50
E

as
t

F
or

k
F

os
te

r
C

re
ek

T
ri

b
n

ea
r

B
ri

d
ge

p
or

t,
W

A

4.
75

21
21

0
21

0
0

0
0.

8
0

0

71
12

45
10

00
S

te
h

ek
in

R
iv

er
at

S
te

h
ek

in
,

W
A

32
1

89
89

0
10

0
0

0
0

33
96

.8
0

0

DRAFT 93 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

72
13

18
50

00
B

oi
se

R
iv

er
n

ea
r

T
w

in

S
p

ri
n

gs
,

ID

83
0

10
2

10
0

0
14

0
2

0
0

18
40

.6
1

2
5

73
13

30
25

00
S

al
m

on
R

iv
er

at
S

al
m

on
,

ID

37
60

96
96

0
99

0
0

0
20

39
.2

0
4
2

74
13

34
36

60
S

m
it

h
G

u
lc

h
T

ri
b

u
ta

ry

n
ea

r
P

at
ah

a,
W

A

1.
85

20
20

0
20

0
0

0
0.

7
1

3

75
14

02
10

00
U

m
at

il
la

R
iv

er
at

P
en

d
le

-

to
n

,
O

R

63
7

57
57

0
86

0
0

0
10

66
.7

0
0

76
14

04
80

00
J
oh

n
D

ay
R

iv
er

at
M

cd
on

-

al
d

F
er

ry
,

O
R

75
80

10
5

10
5

0
11

7
0

0
0

25
49

.2
0

0

77
14

13
70

00
S

an
d

y
R

iv
er

n
ea

r
M

ar
m

ot
,

O
R

26
3

99
99

0
99

0
0

0
28

94
.4

0
0

78
14

32
10

00
U

m
p

q
u

a
R

iv
er

n
ea

r
E

lk
to

n
,

O
R

36
83

10
4

10
4

0
10

5
0

0
0

18
02

2.
5

2
9

79
15

07
20

00
F

is
h

C
n
ea

r
K

et
ch

ik
an

,
A

K
32

.1
91

91
0

95
0

0
0

13
52

.2
0

0

DRAFT 94 DRAFT



S
it

e
U

S
G

S
ID

S
ta

ti
on

N
am

e
D

A
N

P
k
N

S
N

0
N

H
N

Z
Q

g
d

N
<
g
d
Q

G
B

N
G
B

N
M

G
B

80
16

06
80

00
E

b
O

f
N

f
W

ai
lu

a
R

iv
er

n
ea

r

L
ih

u
e,

K
au

ai
,

H
I

6.
27

95
95

0
95

0
0

0
41

8.
8

0
5

81
16

51
80

00
W

es
t

W
ai

lu
ai

k
i

S
tr

ea
m

n
ea

r
K

ea
n

ae
,

M
au

i,
H

I

3.
66

90
90

0
96

0
0

0
92

6.
2

0
0

82
16

58
70

00
H

on
op

ou
S

tr
ea

m
n

ea
r

H
u

el
o,

M
au

i,
H

I

0.
64

98
98

0
10

0
0

0
0

36
.7

0
0

DRAFT 95 DRAFT



B Appendix: Graphical Comparisons Between EMA

and B17B at the 82 Test Sites

B.1 Systematic Data Sites
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Figure 25: Site 01076500 with Systematic Data Only
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Figure 26: Site 01439500 with Systematic Data Only
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Figure 27: Site 01555500 with Systematic Data Only
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Figure 28: Site 01635500 with Systematic Data Only
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Figure 29: Site 02037500 with Systematic Data Only
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Figure 30: Site 02256500 with Systematic Data Only
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Figure 31: Site 03183500 with Systematic Data Only
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Figure 32: Site 05586500 with Systematic Data Only
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Figure 33: Site 06406000 with Systematic Data Only
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Figure 34: Site 06710500 with Systematic Data Only
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Figure 35: Site 07208500 with Systematic Data Only
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Figure 36: Site 07382000 with Systematic Data Only
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Figure 37: Site 08380500 with Systematic Data Only
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Figure 38: Site 08387000 with Systematic Data Only
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Figure 39: Site 10128500 with Systematic Data Only
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Figure 40: Site 11266500 with Systematic Data Only
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Figure 41: Site 12134500 with Systematic Data Only
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Figure 42: Site 12414500 with Systematic Data Only
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Figure 43: Site 12437950 with Systematic Data Only
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Figure 44: Site 12451000 with Systematic Data Only
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Figure 45: Site 14021000 with Systematic Data Only
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Figure 46: Site 14048000 with Systematic Data Only
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Figure 47: Site 14137000 with Systematic Data Only
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Figure 48: Site 15072000 with Systematic Data Only
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Figure 49: Site 16518000 with Systematic Data Only
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Figure 50: Site 16587000 with Systematic Data Only
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B.2 Sites with Historical Information
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Figure 51: Site 01350000 with Systematic and Historical Data
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Figure 52: Site 01562000 with Systematic and Historical Data
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Figure 53: Site 01636500 with Systematic and Historical Data
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Figure 54: Site 02138500 with Systematic and Historical Data
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Figure 55: Site 03011020 with Systematic and Historical Data
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Figure 56: Site 03051000 with Systematic and Historical Data
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Figure 57: Site 03159500 with Systematic and Historical Data
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Figure 58: Site 03550000 with Systematic and Historical Data
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Figure 59: Site 03558000 with Systematic and Historical Data
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Figure 60: Site 03606500 with Systematic and Historical Data
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Figure 61: Site 04293500 with Systematic and Historical Data
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Figure 62: Site 06216500 with Systematic and Historical Data
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Figure 63: Site 06600500 with Systematic and Historical Data
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Figure 64: Site 06898000 with Systematic and Historical Data
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Figure 65: Site 07067000 with Systematic and Historical Data
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Figure 66: Site 08167000 with Systematic and Historical Data
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Figure 67: Site 08378500 with Systematic and Historical Data
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Figure 68: Site 09482500 with Systematic and Historical Data
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Figure 69: Site 12413000 with Systematic and Historical Data
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B.3 Sites with Low Outliers
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Figure 70: Site 01668000 with Low Outliers; no historical information
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Figure 71: Site 03345500 with Low Outliers; no historical information
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Figure 72: Site 05572000 with Low Outliers; no historical information
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Figure 73: Site 06176500 with Low Outliers; no historical information
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Figure 74: Site 07203000 with Low Outliers; no historical information
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Figure 75: Site 08133500 with Low Outliers; no historical information
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Figure 76: Site 08150000 with Low Outliers; no historical information
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Figure 77: Site 08189500 with Low Outliers; no historical information
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Figure 78: Site 09241000 with Low Outliers; no historical information
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Figure 79: Site 09480000 with Low Outliers; no historical information
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Figure 80: Site 10234500 with Low Outliers; no historical information
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Figure 81: Site 11028500 with Low Outliers; no historical information
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Figure 82: Site 11152000 with Low Outliers; no historical information
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Figure 83: Site 11274500 with Low Outliers; no historical information
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Figure 84: Site 11383500 with Low Outliers; no historical information
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Figure 85: Site 12307500 with Low Outliers; no historical information
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Figure 86: Site 13302500 with Low Outliers; no historical information
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Figure 87: Site 13343660 with Low Outliers; no historical information

DRAFT 161 DRAFT



Figure 88: Site 14321000 with Low Outliers; no historical information
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Figure 89: Site 16068000 with Low Outliers; no historical information

DRAFT 163 DRAFT



B.4 Sites with a Combination of Data Types
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Figure 90: Site 03289500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 91: Site 05270500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 92: Site 05291000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 93: Site 05464500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 94: Site 06062500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 95: Site 06897000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 96: Site 06933500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 97: Site 07138600 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 98: Site 08164000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 99: Site 08171000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 100: Site 09361500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 101: Site 09471000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 102: Site 11176000 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 103: Site 11464500 with a Combination of Low Outliers, Historical
and/or High Outliers

DRAFT 178 DRAFT



Figure 104: Site 11522500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 105: Site 12039500 with a Combination of Low Outliers, Historical
and/or High Outliers
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Figure 106: Site 13185000 with a Combination of Low Outliers, Historical
and/or High Outliers
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B.5 Studies with LP3 Distribution and Regional Skew

Figures 107 - 109 show the same cases as Figures 2 - 4 except that regional

skew information has been added with a MSE of 0.15 – a typical value

consistent with Bayesian/GLS skew maps Lamontagne et al. (2012); Parrett

et al. (2011); Gotvald et al. (2006). As expected, all of the estimators

perform better with regional information. Aside from that, however, there

is little difference between the corresponding figures.
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Figure 107: Results are based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from a Log-Pearson Type 3 distribution with skew
γ = 0.0 Regional skew is assumed to be 0.0 with MSE = 0.15.

●

●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●● ●

●

●

●

●●

●
●

●

●
●
●
●

●

●
●

●
●●

●
●

●●
●

●
●

●

●
●

●

●●

●

●
●

●
●
●

●●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●
●

●
●
●●

●
●
●
●

●

●
●

●
●
●●

●
● ●

●

●

●

●
●

●

Comparison of 1% Flood Estimators
Simulated Data from LP3

  S = 40; H = 100; G = 0; MSEG =  0.15

D
is

ch
ar

ge
 [c

fs
]

10
0

10
00

10
00

0

B17B/GB
B17B/MGB
EMA/MGB
Q[ 0.01 ]

● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

●

● ●
●

0
40

80

Expected Number of Historic Floods

E
R

L

18 19
28 30 31 39

64 68
59

0.11 0.96 0.96

None (H=0) 1 2 10

1e
−

03
1e

−
01

1e
+

01
1e

+
03

Frequency Distribution
LP3 Distribution G = 0

Percent Exceedance Probability

Q
[C

F
S

]

99 90 50 10 1

Probability Density Function
LP3 Distribution G = 0

Log(Q)

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

DRAFT 183 DRAFT



Figure 108: Results are based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from a Log-Pearson Type 3 distribution with skew
γ = −0.5. Regional skew is assumed to be −0.5 with MSE = 0.15.
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Figure 109: Results are based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from a Log-Pearson Type 3 distribution with skew
γ = 0.05. Regional skew is assumed to be 0.5 with MSE = 0.15.
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B.6 Additional Studies with Specific Frequency Curves

Figures 5 - 8 and 110 - 111 apply the three estimators, EMA/MGB, B17B/GB

and B17B/MGB, to data drawn from specific populations selected to test

the estimators’ performance. The Cases are labeled “robustness test curve

1-6” in recognition of their origins. Figures 5 - 8 are presented in the main

body of this report. Figures 110 and 111 are presented here in the ap-

pendix because they do not actually deal with robustness but rather with

specific LP3 populations. In fact, because the estimators are all invariant

with respect to location and scale, these two cases duplicate cases already

considered in the report. Figure 110 depicts essentially the same case as

figure 4 with a population skew of γ = 0.5. Figure 111 depicts essentially

the same case as figure 3 with a population skew of γ = −0.5.
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Figure 110: Results are based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from robustness test curve 1
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Figure 111: Results are based on 10000 replicate samples of size NS = 40
and NH = 100 drawn from robustness test curve 2
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