Lessons Learned from NOAA Atlas 14

Geoff Bonnin
National Oceanic and Atmospheric Administration
National Weather Service
Office of Hydrologic Development
Topics

- NOAA Atlas 14 Accomplishments
 - Status
 - Lessons Learned
- HMR Status
- What Needs To Be Done?
NOAA Atlas 14: Precipitation Frequency Atlas of the United States

- Produced by NWS on behalf of Federal Government
- NA14 is most recent document
 - supersedes various publications developed since late 1940s
- Defacto national design standard
- Reimbursable funding
- Begun in 2000 (in our 15th year)
- Published as volumes by project area
 - as funds become available
Lessons Learned 1

• Funding is the controlling factor
 - *Piecemeal funding > piecemeal project*
 - *OK for NA14* (Oh really?!?!?!)
 - “Same” science applied area by area
 - No guarantee of project completion
 - *Not OK for PMP*
 - There is science to develop to be applied generally
 - Data to be gathered and analyzed to support the science
 - We don’t know what “areas” are
Lessons Learned 2

- Assembling funds from many sources is tricky
 - **Difficult to identify a specific, separable work package for each funding source**
 - **Need MOUs that provide support to a single project**
Lessons Learned 3

- **Project Management**
 - *Need a critical mass of management expertise*
 - *Dedicated to the role in the long term*
 - *Proper grasp of users:*
 - Community
 - Practice
 - Needs
 - *Proper grasp of all aspects of the project*
Lessons Learned 4

- **Technical Capability**
 - *Need a critical mass of technical expertise*
 - Hydrology
 - Meteorology
 - Statistics
 - Software development
 - Configuration management
 - Quality control
 - *Dedicated to the role in the long term of each project phase*
 - *Proper grasp of users:*
 - Community
 - Practice
 - Needs
HMR Status

Existing studies are old
- Some predate understandings of meso-scale meteorology

Data is several decades old or older

<table>
<thead>
<tr>
<th>Document link</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrometeorological Report No. 39</td>
<td>Probable Maximum Precipitation in the Hawaiian Islands</td>
<td>1963</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 41</td>
<td>Probable Maximum and TVA Precipitation over the Tennessee River Basin above Chattanooga</td>
<td>1965</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 46</td>
<td>Probable Maximum Precipitation, Meikong River Basin</td>
<td>1970</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 48</td>
<td>Probable Maximum Precipitation and Snowmelt Criteria For Red River of the North Above Pembina, and Souris River Above Minot, North Dakota</td>
<td>1973</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 51</td>
<td>Probable Maximum Precipitation Estimates, United States East of the 105th Meridian Digitized maps</td>
<td>1978</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 52</td>
<td>Application of Probable Maximum Precipitation Estimates - United States East of the 105th Meridian</td>
<td>1982</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 53</td>
<td>Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian</td>
<td>1980</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 54</td>
<td>Probable Maximum Precipitation and Snowmelt Criteria for Southeast Alaska</td>
<td>1983</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 55A</td>
<td>Probable Maximum Precipitation Estimates - United States Between the Continental Divide and the 103rd Meridian</td>
<td>1988</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 56</td>
<td>Probable Maximum and TVA Precipitation Estimates With Areal Distribution for Tennessee River Drainages Less Than 3,000 M2 in Area</td>
<td>1986</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 57</td>
<td>Probable Maximum Precipitation - Pacific Northwest States, Columbia River (including portions of Canada), Snake River and Pacific Coastal Drainages</td>
<td>1994</td>
</tr>
<tr>
<td>Hydrometeorological Report No. 59</td>
<td>Probable Maximum Precipitation for California HMR58 and HMR59 shapefiles (2.9 MB)</td>
<td>1999</td>
</tr>
<tr>
<td>NOAA Technical Memorandum NWS HYDRO 39</td>
<td>Probable Maximum Precipitation for the Upper Deerfield River Drainage Massachusetts/Vermont</td>
<td>1984</td>
</tr>
<tr>
<td>NOAA Technical Memorandum NWS HYDRO 41</td>
<td>Probable Maximum Precipitation Estimates for the Drainage Above Dewey Dam, Johns Creek, Kentucky</td>
<td>1985</td>
</tr>
<tr>
<td>Technical Paper No. 47</td>
<td>Probable Maximum Precipitation and Rainfall-Frequency Data for Alaska</td>
<td>1963</td>
</tr>
</tbody>
</table>
What Needs To Be Done?

- Update PMP estimation guidance
 - New form of guidance?
 - Automated procedures?
 - New publication/delivery mechanism?
 - Web based services?

- Provide AEPs between NA14 & PMP
 - nature of product(s)?
 - publication/delivery mechanism(s)
Approach

- Socialization and Resourcing
- Major Project Elements
- Governance
- Funding
- Project Plans
Socialization and Resourcing

- Obtain SOH and ACWI approval
 - Includes buy-in from resource sources

- Must also obtain buy-in directly from each agency
 - Through agency approval & resourcing mechanisms

- Support from non-Federal stake-holders
Major Project Elements 1

• Update science
 – Literature review to define research program
 – Grants and in-house research
 • Takes time; ~2-4 years
 – Consolidate research
 – Synthesize the new approach(es)

• Add to and reanalyze historical storms
 – Probably with new science

• Modernize Severe Storms Catalog
 – Availability
 – Usability
 – Integrity
Major Project Elements 2

- Define new products
- Apply new methodology
 - Focus on producing new products!!
 - transition from research to production!!
- Define new publication/delivery mechanism(s)
 - Build and test mechanisms
- Publish new products
- Training
Governance

• Must obtain community acceptance
 – What is the “community”
 – Approach
 – Results
 – Formal public review and comment

• Project plans and accountability
 – What is the “community”?
Funding

• Funding is fundamental
 – Don’t proceed without prospect of funding success
 – Second chances are rare

• Need long term commitment
 – Funding and governance

• How are costs shared?
Project Plan

• Who does what work?
 • Relationship between separate agency efforts
 – current and planned

• Project Management
 – Integration, coordination, accountability
 – Needs strong management
 • Avoid diffusion of responsibility
 – Community acceptance
 • Requires integrity of process and results
 – Better to have single Project Manager

• Staffing