Coastal Storm Events
Overview of FHWA Plan of Action

A Briefing by

Joe Krolak, P.E.
Hydraulic Engineer
Federal Highway Administration
27 July 2006

Plan of Action
FHWA Organization

- Headquarters
- Division Offices
 - 50 States, District of Columbia, Puerto Rico
 - 3 Federal Lands Divisions
- Turner Fairbanks Highway Research Center
- Resource Centers

Plan of Action
FHWA Authority & Process

- Legislative
 - Safe, Accountable, Flexible, Efficient Transportation Equity Act – A Legacy for Users (SAFETEA-LU)

- Regulatory

- Sections - Parts - Subparts
 - 23 CFR 650 Subpart A - Location & Hydraulic Design of Encroachments on Floodplains - November 1979
 - 23 CFR 650 Subpart C - M

Affects Federal-Aid for States
Plan of Action

Implementation

- **Policy**
 Intent of a specific Section
 "Prevent ... hazardous use ... of floodplains ...

- **Technical Advisory**
 Provide Guidance on how to achieve Policy

- **Research & Publications**
 Procedures on how to achieve Guidance
 HEC-25 – Highways in the Coastal Environment (under development)

Plan of Action

GOAL

A proposed set of studies, technology transfer activities, and policies to fully achieve a rational approach that addresses wave force, storm surge, and scour vulnerabilities in existing and new structures.

Plan of Action

Incentives

- **Storm Events**
- **Public Safety**
 - Loss of Life
 - >1000 structures
- **Economics**
 - Several $billion ER
 - Lost Capacity
- **Political**
 - Congress will act

Plan of Action

Ivan: I-10 Escambia Bay

- **Storm Surge**
 - Design stillwater level = 11.7 ft

- **Waves**
 - Significant wave height = 6.5 ft
 - Maximum wave height = 13.0 ft
 - Maximum wave elevation = 21.2 ft
 - Peak period = 3.2 seconds

- **Probabilistic characterization**
 - About the 200-year event

- **Replacement bridge**
 - Built to maximum surge + wave
 - $200 million
Plan of Action
Katrina: US-90 Biloxi Bay

- Storm Surge
 - Design stillwater level = 20 ft

- Waves
 - Significant wave height = 6.2 ft
 - Maximum wave height = 10.6 ft
 - Maximum wave elevation = 27.2 ft
 - Peak period = 5.1 seconds

- Probabilistic characterization
 - Slightly greater than 100-year event

- Replacement bridge
 - Built to maximum surge + wave
 - $250 million

Plan of Action
Katrina: US-90 Bay Saint Louis

- Storm Surge
 - Design stillwater level = 25 ft

- Waves
 - Significant wave height = 9.1 ft
 - Maximum wave height = 15.3 ft
 - Maximum wave elevation = 37.2 ft
 - Peak period = 6.1 seconds

- Probabilistic characterization
 - Much greater than 100-year event

- Replacement bridge
 - Built to maximum surge + wave
 - $300 million

Plan of Action
Katrina: I-10 Lake Pontchartrain

- Storm Surge
 - Design stillwater level = 11.7 ft

- Waves
 - Significant wave height = 6.0 ft
 - Maximum wave height = 12.6 ft
 - Maximum wave elevation = 22.8 ft
 - Peak period = unknown

- Probabilistic characterization
 - About a 100-year event

- Replacement bridge
 - Built to really big low-chord
 - $600 million

Plan of Action
Scope & Focus

- Present
 - Bridges
 - Constituents
 - storm surge
 - hydrodynamic forces
 - scour

- National & Coastal Orientation

- Future
 - Roadway embankments
 - Ancillary structures (signs, signals, lights)

*wave impact, uplift, and buoyancy

Douglass, 2005
Plan of Action

Pieces of the Puzzle

- Damaging Waves
 - Size, Period, Frequency, Cycles, Probability of occurrence
 - Where and how do they cause damage?
- Wave and water loads and forces
 - What are they?
 - Where and how do they act on structure and substructure?
- Vulnerable Bridges
 - Which are they?
 - How do you determine (screen) these?
 - What is the risk?
- Potential mitigation and retrofit measures
 - Older bridges v. New bridges
- Gordian Knot
 - "policy-guidance-technical document--who-does-what-and when--show-me-the-money"

Plan of Action

Activities

- Wave Force Symposium
- Record / Document
 - Literature search
 - Lessons learned
 - Gaps in research / State of practice
- Research & Studies
 - University South Alabama / Texas A&M
 - Vulnerability & Risk
 - Retrofit pooled fund
 - TFHRC
- Procedures and Guidance
 - Design frequencies
 - Wave and other hydrodynamic loads
 - Bridge vulnerability

Plan of Action

Activities: State of Practice

- Wave Force Symposium
- Record / Document
 - Literature search
 - Lessons learned
 - Gaps in research / State of practice
- Research & Studies
 - University South Alabama / Texas A&M
 - Vulnerability & Risk
 - Retrofit pooled fund
 - TFHRC
- Procedures and Guidance
 - Design frequencies
 - Wave and other hydrodynamic loads
 - Bridge vulnerability

Not Bridge Specific!
Plan of Action

Activities: Design Frequency

- **Typical Design**
 - Use 25 to 50-year return period
 - Consider freeboard
 - Does not consider waves

- **Why?**
 - National Bridge Inventory
 - 703,500 bridges
 - 513,880 over waterways
 - Approximately 95% riverine
 - Insufficient research, methods, and tools
 - Informal assessment of risk

Plan of Action

Activities: Wave Forensics

- **Numerical Modeling**
 - Chen, 2005-2006

- **Wave Tank Modeling**
 - Edge, 2006

Plan of Action

Design Frequency - Intent

- **Help out Gulf States directly affected by Katrina**
 - Allowing them to rebuild
 - Their standards would have required them to rebuild to same elevation as Katrina destroyed
 - FHWA showed a way to use our regulations to avoid this
 - Codified same approach used after Ivan at I-10 Escambia Bay, Florida

Plan of Action

Activities: Wave Forensics

- **Wave Tank Modeling**
 - Edge, 2006
Plan of Action
Activities: Wave Forensics

- Field Work

Douglass, M., et. al., 2006

Plan of Action
Activities: Wave Forces

http://www.southalabama.edu/usacterec/waveforces.html

Plan of Action
Direction

Joint FHWA-AASHTO Task Force

- Work together to address
 - technical issues
 - design specifications
 - implementation measures

- Multidisciplinary
 - structural
 - coastal
 - hydraulic
 - geotechnical

- Composition
 - FHWA
 - State DOT
 - Academia

Questions?