
COMBINED ESTIMATION OF HYDROGEOLOGIC CONCEPTUAL MODEL, 
PARAMETER, AND SCENARIO UNCERTAINTY 

Philip D. Meyer, Sr. Research Engineer, Pacific Northwest National Laboratory, Portland, 
Oregon, philip.meyer@pnl.gov; Ming Ye, Assistant Research Professor, Desert Research 

Institute, Las Vegas, Nevada, ming.ye@dri.edu; Shlomo P. Neuman, Professor, University 
of Arizona, Tucson, Arizona, neuman@hwr.arizona.edu; Mark L. Rockhold, Sr. Research 

Scientist, Pacific Northwest National Laboratory, Richland, Washington, 
mark.rockhold@pnl.gov; Kirk J. Cantrell, Sr. Research Scientist, Pacific Northwest 

National Laboratory, Richland, Washington, kirk.cantrell@pnl.gov; Thomas J. Nicholson, 
Sr. Technical Advisor for Radionuclide Transport, U.S. Nuclear Regulatory Commission, 

Rockville, Maryland, tjn@nrc.gov  

Abstract: We describe the development and application of a methodology to systematically and 
quantitatively assess predictive uncertainty in groundwater flow and transport modeling that 
considers the combined impact of hydrogeologic uncertainties associated with the conceptual-
mathematical basis of a model, model parameters, and the scenario to which the model is 
applied. The methodology is based on an extension of a Maximum Likelihood implementation of 
Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of 
alternative conceptual models for a site with associated prior model probabilities that reflect a 
belief about the relative plausibility of each model based on its apparent consistency with 
available knowledge and data. Posterior model probabilities are computed and parameter 
uncertainty is estimated by calibrating each model to observed system behavior; prior parameter 
estimates are optionally included. Scenario uncertainty is represented as a discrete set of 
alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of 
the models, with associated prior scenario probabilities. A joint assessment of uncertainty results 
from combining model predictions computed under each scenario using as weights the posterior 
model and prior scenario probabilities.  

INTRODUCTION 

Regulatory and design applications of hydrogeologic models of flow and contaminant transport 
often involve using the models to make predictions of future system behavior. These predictions 
are inherently uncertain as a result of incomplete knowledge of the system, variability in system 
properties, randomness in the system stresses, measurement and sampling errors, and disparity 
among sampling, simulation, and actual scales of the system. These uncertainties are manifested 
in a hydrogeologic model as uncertainty in model conceptualization (including the mathematical 
implementation of that concept), model parameters, and model scenarios. Assessing the impact 
of parameter uncertainty on model predictions is accepted in policy (EPA 1997; NRC 2003) and 
is fairly common in practice. Parameter uncertainty analysis proceeds by characterizing the 
uncertainty in model parameter values and propagating this uncertainty into the predicted 
quantities produced by the model. It is implicit in this process that the resulting predictive 
uncertainty is conditional on the structure of the model. It is generally recognized, however, that 
a hydrogeologic model of a site is invariably an approximation of the actual system. As a 
consequence, it may be possible to postulate more than one conceptual model for a site that is 
consistent with site characterization data and observed system behavior. Although the potential 



importance of conceptual model uncertainty is accepted in theory, practical methods to assess the 
impact of model uncertainty on prediction have not found their way into widespread practice. A 
scenario is a description of the future conditions under which a model is applied. Scenario 
development is most commonly associated with radioactive waste disposal performance 
assessment (NEA 2001), but the concept applies to any modeling application in which prediction 
of future system behavior is made. Scenarios are inherently uncertain since they describe 
conditions in the (uncertain) future.  

What evidence is there for the relative importance of conceptual model, parameter, and scenario 
uncertainties in modeling practice? Published results from hydrogeologic model post-audits were 
reviewed to attribute the primary modeling errors in these applications to conceptual, parameter, 
or scenario uncertainties. Six additional modeling applications described in Bredehoeft (2005) 
were included in this review. Results are shown in Table 1 and demonstrate the importance of 
conceptual and scenario uncertainties in contributing to model predictive errors. In 9 of the 15 
applications, conceptual model errors were most significant. Model scenario errors were the most 
significant in 4 of the 15 applications. Parameter errors were most significant in only two of the 
applications. This (limited) review suggests that conceptual model and scenario uncertainties 
cannot be ignored in hydrogeologic modeling if a realistic estimate of predictive uncertainty is 
desired. This paper describes a methodology for estimating uncertainty in hydrogeologic 
modeling that jointly considers conceptual model, parameter, and scenario uncertainties. 

Table 1. Attribution of primary errors in hydrogeologic model applications (see Bredehoeft 
[2005] for underlying references unless otherwise noted). 

Prototype  Comments Error 
Phoenix Assumed past groundwater pumping would continue 

in future 
Scenario/Conceptual 

Cross Bar Ranch 
Wellfield  

Assumed a 75-day, no-recharge scenario would 
represent long-term maximum drawdown 

Scenario/Conceptual 
(Stewart and Langevin, 1999) 

Arkansas Valley  Needed a longer period of calibration Scenario/Parameter 
Coachella Valley  Recharge events unanticipated Scenario 
INEL Dispersivities poorly estimated Parameter 
Blue River  Storativity poorly estimated Parameter/Conceptual 
Houston  Including subsidence in model improved predictions Conceptual 
HYDROCOIN  Boundary condition modeled poorly Conceptual 
Ontario Uranium Tailings  Inadequate chemical reaction model Conceptual 
Los Alamos  Flow through unsaturated zone not understood Conceptual 
Los Angeles Flow vectors 90° off in model Conceptual 
Summitville  Seeps on mountain unaccounted for Conceptual 
Santa Barbara  Fault zone flow unaccounted for Conceptual 
WIPP  Assumed salt had no mobile interstitial brine Conceptual 
Fractured Rock Waste 
Disposal  

Preferential flow in unsaturated zone unaccounted for Conceptual 

 



A BRIEF REVIEW OF BAYESIAN MODEL AVERAGING 

A practical method for evaluating prediction uncertainty in hydrogeologic modeling with 
consideration of model and parameter uncertainty is Maximum Likelihood Bayesian Model 
Averaging (MLBMA) (Neuman, 2003; Ye et al. 2004). This method is a maximum likelihood 
implementation of Bayesian Model Averaging (BMA) (Draper, 1995; Hoeting et al., 1999). In 
BMA, the posterior distribution of a predicted quantity, Δ , given a set of data, D, is 
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where M = ( )1,..., KM M  is a discrete set of postulated alternative models representing the relevant 
conceptual model uncertainties, ( ),kp MΔ D  is the posterior distribution of Δ  for model Mk, and 

( )kp M D  is the posterior model probability for model Mk. Parameter uncertainty enters (1) as the 
random contribution to  

 ( ) ( ), , , ( , )k k k k k kp M p M p M dΔ = Δ∫D D Dθ θ θ  (2) 

where kθ  is the vector of parameters associated with model kM  and ( ),k kp Mθ D  is the posterior 
probability density of kθ  given kM  and D. Given ( ),k kp Mθ D , (2) could be solved using, for 
example, Monte Carlo simulation.   

Posterior model probability is given by Bayes’ theorem, 
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where ( )kp MD  is the likelihood of model kM  and ( )kp M  is the prior probability of model kM . 
The model likelihood can be expressed as 

 ( ) ( ) ( ),k k k k k kp M p M p M d= ∫D D θ θ θ  (4) 

where ( )k kp Mθ  is the prior probability density of kθ  under model kM , and ( ),k kp MD θ  is the 
joint likelihood of model kM  and its parameters kθ . MLBMA (Neuman 2003) uses a maximum 
likelihood approximation to solve (4) and a result due to Kashyap (1982) for (3). 

To apply BMA, one formally requires that the prior model probabilities sum up to one, 
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This implies that all possible models of relevance are included in M (i.e., the set is collectively 
exhaustive), and that all models in M differ from each other sufficiently to be considered 
mutually exclusive (i.e., the joint probability of any two models is zero). In practice, it may be 
impossible to demonstrate that the set of models is collectively exhaustive. In this case, model 
uncertainty may be underestimated and model probability must be interpreted as relative to the 



other models in M, a condition implied by the fact that all probabilities computed using BMA 
are conditional on M. For additional comments on the interpretation of model probabilities, see 
Ye et al. (2004) and Meyer et al. (2004). 

INCORPORATION OF SCENARIO UNCERTAINTY 

In the MLBMA method, existing observations of system behavior (i.e., D) are used to provide 
model probabilities and to determine parameter values and their estimation errors (uncertainty). 
The period of time covered by the observations in D is referred to as the calibration or history-
matching period. Each model in M is calibrated in the history-matching period using the dataset 
D. The calibrated models are then used to simulate the system behavior in the predictive period 
with each model’s result weighted by its posterior model probability. Parameters and model 
probabilities are referred to as posterior in the sense that they are conditioned on D. Scenarios 
characterize conditions during the period of prediction: that is, outside the time period 
represented by D. As a result, these predictions cannot be conditioned on data since there are, by 
definition, no observations of system behavior during the prediction period. This modeling 
framework is illustrated in Figure 1; a single model is shown in this figure with scenario 
uncertainty represented discretely as three alternative scenarios. 
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Figure 1. Framework for predictive modeling with scenario uncertainty. 

For calibration, the models must reflect the system conditions of the history matching period and 
must be capable of producing the quantities in D (typically head and concentration 
measurements). For prediction, the models must reflect the future scenario(s) and must be able to 
produce the quantities required to evaluate site safety/performance. This will, in general, require 
that changes be made to the models between the history-matching and prediction periods. For 
example, a climate change scenario may require modification of the upper boundary condition 
representing precipitation or recharge. It is assumed here that all the models in M retained for 
prediction (i.e., those models with non-negligible posterior model probabilities) were constructed 
such that they can be easily modified to simulate any scenario considered.  

Bayesian Model Averaging Conditioned on a Specific Scenario: Formally, scenario 
uncertainty can be quantitatively assessed jointly with model and parameter uncertainties 
following the methodology described by Draper (1995) and applied in a nuclear waste disposal 



context (albeit without the inclusion of model uncertainty) by Draper et al. (1999). Consider an 
uncertain scenario in which the uncertainty is modeled discretely as a set of alternative scenarios, 
S = ( )1,..., IS S . For a given scenario, Si, the posterior distribution of a predicted quantity can thus 
be interpreted as conditional on that scenario and equation (1) becomes 
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Posterior model probability conditional on a given scenario can be expressed similarly by 
modifying equation (3). 
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The simplifications made in the rightmost equality of equation (7) are based on the assumption 
that the dataset, D, is independent of the scenario. That is, the occurrence of any particular 
scenario in the future does not affect the probability of observing the data , D, in the past. As a 
result, the model likelihoods, ( )kp MD , are not a function of the scenario and do not need to be 

recomputed under each scenario. In contrast, prior model probability, ( )k ip M S , is potentially a 
function of the scenarios. That is, the occurrence of specific future hydrologic conditions may 
have an impact on the relative plausibility of the various models. Thus posterior model 
probability is a function of the scenario only through the possible dependence of prior model 
probabilities on the scenario. As in equation (5), prior model probabilities under a given scenario 
must sum to one. 
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Posterior mean and variance of Δ can be written as 
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where the two terms on the right hand side of (10) represent within-model and between-model 
variance for a given scenario.  

Scenario Averaging: Averaging equation (6) over all scenarios using scenario probabilities 
( ) ( )i ip S p S= D  as weights gives 
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where ( )p Δ D  is implicitly conditioned on all scenarios and model structures. Probabilities 

( ), ,i kp S MΔ D  and ( ),k ip M S D  can be obtained by Monte Carlo simulation and (7), 
respectively. For the averaging in (11) we require that the scenarios given in S = ( )1,..., IS S  are 
mutually exclusive and collectively exhaustive. That is, 
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The posterior mean of Δ, including the effects of scenario uncertainty, is 
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where ( ), iE SΔ D  is evaluated by (9). The posterior variance of Δ can be written as 
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where ( ), iE SΔ D  and ( ), iVar SΔ D  can be estimated by equations (9) and (10). The first term 
on the right hand side of (14) is the variance within scenarios; the second term is the variance 
between scenarios.     

By substituting equation (10) into (14), the posterior variance can be rewritten in the manner of 
Draper (1995) as 
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This three terms in this expression are (1) the variance within models and scenarios, (2) the 
variance between models within scenarios, and (3) the variance between scenarios. 

The equations provided above can be applied to estimate the individual and collective 
contribution to model predictive uncertainty of parameter, conceptual model, and scenario 
uncertainties. Parameter and conceptual model uncertainty are considered using maximum 
likelihood Bayesian model averaging (MLBMA) in the history-matching period (the period for 
which system state data exist). To incorporate scenario uncertainty, the MLBMA results are 
repeatedly applied in the predictive period under a set of alternative scenarios. Because the 
scenarios describe future conditions, the scenario probabilities represent prior estimates and 
cannot be updated using the (past) system state data. Incorporation of scenario uncertainty using 
the method described here thus does not require any additional calibration (beyond that 
conducted in the MLBMA analysis), but does require additional probabilistic calculations. For 
example, solution of equation (11) could be accomplished using a Monte Carlo simulation of 



each model within each scenario. This is straightforward, albeit computationally expensive for 
large or complex numerical models.  

Specifying Scenarios and Their Probabilities: To complete the analysis described here 
requires specifying a set of alternative scenarios and their probabilities. As discussed above the 
alternative scenarios must be mutually exclusive and collectively exhaustive. As with the set of 
model alternatives, it is likely impossible to prove that a set of scenarios is collectively 
exhaustive. A relatively small set of scenarios may adequately represent the primary sources of 
uncertainty in future hydrologic conditions, particularly if the scenarios can be expressed at a 
fairly conceptual (high) level. An example is a climate change scenario, which may have several 
impacts on the models. By specifying the scenario at a conceptual level we avoid having to 
consider each of the individual impacts separately. Because we require that the set of alternative 
scenarios is collectively exhaustive, scenario probabilities should be interpreted as relative 
probabilities (i.e., relative to the other scenarios in the set). 

Alternative scenarios are often likely to be characterized as discrete events. Climate change, 
floods, and introduction of irrigated agriculture are all examples of discrete events affecting the 
hydrologic conditions at a site. Such events are often not mutually exclusive (e.g., the occurrence 
of irrigated agriculture does not preclude the occurrence of climate change). By defining 
scenarios as possible combinations of alternative events, the scenarios can be made mutually 
exclusive. An example for three events is shown in Table 2. A “1” in the table signifies the 
occurrence of the event in a scenario and a “0” indicates the absence of that event. Scenario 1 in 
Table 2 has none of the events occurring and might be referred to as a reference scenario, 
perhaps characterized by the continuation of current hydrologic conditions into the future. For n 
events, this procedure will result in 2n scenarios; some of these scenarios may be discarded 
because of an insignificant probability or because they are not of regulatory concern. 

As discussed previously, scenario probability represents a subjective evaluation of the 
probability of occurrence. This evaluation can be based on relevant and available information, 
including expert judgment. If the scenarios are enumerated from a set of events such as in Table 
2, the scenario probabilities can be determined from estimates of the marginal (given in Table 2 
by the values of p) and conditional probabilities of the events. If the events are independent, the 
scenario probabilities can be easily computed from the marginal probabilities of the events, as 
illustrated in Table 2. Note that the marginal probabilities for the events characterizing the 
scenarios may sum to more than 1.0, but the scenario probabilities must total 1.0. 

CONCLUSIONS 

Ye et al. (2004) demonstrated the benefit of the MLBMA approach to jointly assess conceptual 
model and parameter uncertainties using an application to geostatistical modeling of air 
permeability at a fractured rock site. An application of MLBMA including the assessment of 
scenario uncertainty is currently underway using groundwater flow and uranium transport data at 
the 300 Area of the U.S. Department of Energy Hanford Site in Washington State. 



Table 2. Formulation of mutually exclusive scenarios from three scenario-characterizing events.  

Events Characterizing Scenarios  
Climate Change (p=0.3) Flood (p=0.2) Irrigated Agriculture (p=0.6) 

 

1 0 0 0 0.224 
2 1 0 0 0.096 
3 0 1 0 0.056 
4 1 1 0 0.024 
5 0 0 1 0.336 
6 1 0 1 0.144 
7 0 1 1 0.084 

Sc
en

ar
io

s 

8 1 1 1 0.036 

Scenario Probability 
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