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Abstract 
A modified MODFLOW code was developed to calculate the analytical sensitivities of both the 
field parameters and the operational parameters using the automatic differentiation system 
ADIFOR.  The analytical sensitivities were then used as input parameters for PEST to calculate 
estimates of the uncertainties.  In addition, the manuscript provides comparison between the 
analytical sensitivities and numerical estimates of the sensitivities as calculated by using PSET. 
Analytical calculations of the sensitivities are known to be more accurate than numerical 
estimates, (usually) takes less time to compute, and the results of analytical computations are 
independent of numerical assumptions such as the magnitude of the perturbation.  Furthermore, 
using analytical sensitivities yields more accurate uncertainties than using the numerical 
estimates of the sensitivities.  The paper also demonstrates the use of sensitivity analysis with 
respect to operation decision parameters such as magnitude of pumping rates from wells for 
optimal management of water resources. 
 

INTRODUCTION 
 
Both sensitivity and uncertainty analysis require accurate estimates of the derivatives of the 
model output with respect to the uncertain parameters. This manuscript demonstrates the use of 
the automatic differentiation utility ADIFOR to accurately and efficiently calculate analytical 
derivatives of model output with respect to input parameters. These derivatives can be used for 
automatic model calibration, sensitivity analysis, and uncertainty analysis.  The Modular Three-
Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) was used herein to 
demonstrate the utilization of the methodology in groundwater applications.  Among the 
available codes for numerical estimation of model sensitivities, the authors arbitrarily chose to 
use the Model-Independent Parameter Estimation code (PEST) to perform sensitivity analysis 
using the numerical approach.  
 

SENSITIVITY ANALYSIS  
 
Scientists and engineers usually perform sensitivity analysis with respect to four types of 
parameters: field and state parameters, parameters related to boundary conditions, decision 
parameters, and parameters related to the numerical algorithm. Examples of field parameters for 
groundwater modeling include viscosity, transmissivity, conductivity, dispersivity, density, heat 
capacity, chemical absorption, and reaction rates.  State variables include pressure, velocity, and 
concentration. Boundary conditions parameters are state variables that are specified along the 



boundary of the area of interest and include pressure, velocity, and concentration. Decision 
parameters include allocation of resources to maximize or minimize system output, subject to 
given constrains.  Examples of decision parameters in groundwater modeling include pumping 
and injection rates, drain elevation, drain conductance, etc. Optimization of the decision 
parameters results in maximum utilization and preservation of the aquifer.  Grid spacing is an 
example of a numerical model parameter. This work presents, as an example, sensitivity of an 
independent variable (pressure head in an aquifer system) with respect to two field parameters 
(transmissivity and vertical conductivity), one boundary condition parameter (specified head 
along a river), a decision parameter (pumping rate of a well system), and grid spacing as an 
example of a parameter related to the numerical algorithm. 
 
Automatic Differentiation  
 
Code development for analytical derivatives is very difficult and tedious for complex numerical 
models which involve thousands of lines of computer code.  Examples of manually developed 
analytical derivatives in computer codes include Hill (1992 and 1998), Harbaugh, et al. (2000) 
and Manganelli, et al. (2002). A more efficient alternative is using an Automatic Differentiation 
(AD) technique. AD is a technique for augmenting modeling codes with partial derivative 
computations. It exploits the fact that every code executes a sequence of elementary arithmetic 
operations. Martins, et al., (2000) and Griewank (2000) discuss the mathematical and 
computational techniques used for general purpose AD computer programs.  The Automatic 
Differentiation of Fortran (ADIFOR 3.0) (Fagan and Carle, 2001) was selected for the 
demonstration in this paper.  
 
In this effort we utilized ADIFOR on the popular groundwater flow modeling code MODFLOW. 
ADIFOR allowed us to calculate a wide range of partial derivatives of state variables including 
head, discharge, and budget terms among others with respect to any input parameter. Unlike the 
approach used by Harbaugh, et al. (2000) in MODFLOW-PES, where analytical derivatives with 
respect some of the field parameters could not be calculated, ADIFOR generated derivatives of 
the dependent variables with respect to boundary conditions, decision parameters, and grid 
spacing. To demonstrate the utility of the approach a series of simple hypothetical tests were 
conducted and compared to the numerical perturbation method. 
 
The authors performed a number of tests viz. nonlinear problems, complex combination of 
boundary conditions, and ground water/surface water interaction problems. In some of these 
tests, numerical derivatives deviate considerably when compared to the analytical derivatives 
obtained through automatic differentiation. The issue of reliability of numerical derivatives has 
been a recognized limitation in inverse modeling, sensitivity analysis, and uncertainty analysis 
(Doherty 2002, Hill 1998 and Poeter and Hill 1998).   For illustration purposes, the next section 
details a groundwater simulation example having a simple homogeneous domain, where the 
transmissivity or vertical conductance could be lumped into one parameter. Overall, calculations 
of analytical derivatives were noticeably faster than calculation of numerical derivatives by 
PEST. The cost saving in run time was considerably greater for simulations of non-homogenous 
conditions. 
 



Example 
 
Figure 1 illustrates the first test problem, which consists of two isotropic and homogenous 
confined aquifers that are separated by a leaky confining unit.  The horizontal hydraulic 
conductivity of the two aquifers is set at 10 ft/day while the vertical conductivity is set at1 ft/day.  
The upper aquifer receives recharge of 0.004 ft/day. Both the upper and lower aquifers drain into 
a river whose bed resistance is 1000 ft2/day and having a water elevation of 75 ft.  The bottom 
aquifer contains two wells that pump at a rate of 35000 ft3/day.  The problem was discretized 
into 2 layers and 10 by 15 square cells of 500 ft side length. The quasi 3-dimensional approach 
of MODFLOW (Mcdonald and Harbaugh 1988) was used to represent leakage between the two 
aquifers through the semi-confining unit. Figure 2 shows the resulting head distribution in the 
upper and lower aquifers. 
 

2 wells pumping 

 
 

Figure 1. Hypothetical test problem showing the use of analytical derivatives approach.  
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Figure 2. Head distribution and flow field in the upper and lower aquifers. 

 
Under the assumption that parameter uncertainty is the dominant source of uncertainty in the 
above problem (hence ignoring any uncertainty in the conceptual model), the following 
parameters can be identified as uncertain; transmissivities of the two aquifers, vertical 
conductance, and conductance of the river bed of the confining unit as field parameters; water 
level in the river and recharge as boundary conditions; pumping rate as a decision parameter; and 
the analyst decision for grid spacing.  For demonstration purposes, this work elected to perform 
sensitivity and uncertainty analyses with respect to transmissivity, vertical conductivity, water 
level at the river, and pumping rate. The aquifer pressure head was used as the dependent 
variable.  The authors also employed ADIFOR to calculate the analytical sensitivity of model 
prediction of the pressure head with respect to grid spacing along the ‘x axis’, which could not be 
done with a perturbation method without altering the computational grid. Except for the 
dependency of the pressure head with respect to the pumping rate, the problem is linear and the 
values of the derivatives calculated accurately by numerical differentiation should be relatively 
close to the values calculated analytically.  

 
Model Sensitivities 
 
Despite the fact that the test problem is simple and predominantly linear, numerical 
differentiation produced considerably different derivatives for different perturbation intervals. 
Figure 3 depicts the result of both analytical and numerical calculations of the derivatives of 
head with respect to transmissivity, vertical conductance, and pumping rate and the duration of 
the computation time. The figure also illustrates the changes in the numerical derivatives with 
the change in the perturbations (increments) used for the numerical calculation. The authors 
changed the example problem for the calculation of the derivatives of aquifer head with respect 
to river stage by fixing the boundary head on the left side of Figure 1 to 100 ft.  Otherwise, the 
derivatives of aquifer heads with respect to river stage are unity over the entire domain.  Figure 4 
depicts the changes for the derivatives of aquifer heads with respect to river head for both the 
analytical and numerical calculations. Both Figures 3 and 4 exhibit that the numerical derivatives  
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Figure 3. Comparison between analytical numerical derivatives using different 

perturbations (increments) showing the reliability of the numerical derivative calculations 
in a simple problem. 
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Figure 4. Comparison between analytical and numerical derivatives using different 

perturbations (increments) for boundary conditions. 
 
vary considerably over the range of chosen perturbations. However, the values of the numerical 
derivatives are close to the analytical derivatives for a given range of perturbation.  
 
Figures 3 and 4 show that if one must use a numerical method to calculate estimates of the 
derivatives, a perturbation of 1% of the independent variable should be used unless problem 
specific data recommend otherwise.   
 
Analytical calculations of pressure head with respect to grid spacing resulted in about 0.3 ft/ft for 
the two model cells that contain the wells. The result indicates that if the grid spacing were 
increased by 1 ft, the resulted model predictions for the pressure heads for these grid cells would 
increase by 0.3 ft, or reduction in the influence of the pumping activity by 0.3 ft. 
 
Table 1 illustrates that calculation of the analytical derivatives was noticeably faster than the 
calculations of the numerical derivatives by PEST using numerical estimates based on 
perturbations. For execution time comparison, all model runs were made on a DELL Precision 
M60 laptop, equipped with a 1.5 GH Pentium processor, 2 GB PC2100 RAM, and a main board 
with 266MH external bus speed.  The cost saving in run time was considerably higher when the 
above problem was slightly modified by considering a non-homogenous hydraulic conductivity 
field and requesting PEST and MODFLOW (with the analytical derivatives) to estimate the 
derivatives of each head with respect to the transmissivity of each grid cell. The analytical 
derivatives approach provided a considerable cost saving over PEST with respect to runtime for 
the small example discussed herein. 

 
UNCERTAINTY ANALYSIS 

 
Users of computer models employ uncertainty analysis mainly for the following purposes: 
examination of how much confidence one should have in the model prediction; study of the 
effect of errors in field parameters, used as input data, on model calibration and verification;  
investigation of the propagation of errors in the input data on the predicted results; improvement 
of model calibration with availability of additional field data; and decreasing uncertainty of 
model results and obtain further calibration of the input parameters by minimization of 
uncertainty-based error functions (inverse problem). 
 



 
Table 1. Comparison of computer run time between analytical and numerical estimates of 

the derivatives with respect to pressure heads 
 

Independent Variable Analytical Calculations 
(seconds) 

Numerical Estimations 
(seconds) 

Vertical conductance (homogeneous-scalar) 
Vertical conductance (heterogeneous-matrix)  
Transmissivity (homogeneous-scalar) 
Pumping rate (homogeneous-scalar) 
River stage (homogeneous-scalar) 
Grid spacing (homogeneous-scalar) 

0.13 
4.77 
0.20 
0.18 
0.20 
0.18 

0.90 
22.54 
1.31 
0.50 
1.20 

 
 
The uncertainty analysis methods can be grouped in four categories: respond surface or statistical 
methods, fussy logic methods, cross validation methods, and minimization of a generalized 
Baysian loss function methods.  For the respond surface method, the analyst first chooses a small 
subset of the system parameters using their "engineering judgment.“  In the second step the 
analyst selects a perturbation pattern for the selected parameters from experimental design 
theories.  In the third step the analyst uses the perturbation pattern to perform multiple code runs 
that provide new response (output) values. In the fourth step the analyst employs simple 
functional forms to fit the response data to a multidimensional response surface based on a pre-
determined probabilistic distribution that simplifies the original complexity of the model in 
question. In the fifth step the analyst utilizes sophisticated statistical algorithms (e.g., moment 
matching, Monte Carlo) to estimate statistical properties and uncertainty distributions of the 
responses. 
 
For the minimization of a generalized Bayesian loss function the analyst solves an optimization 
problem (minimization of a constrained Lagrangian function) of the residual vector multiplies 
with some form of the covariance matrix. The optimization problem consistently combines field 
measurements with model outputs to simultaneously obtain best estimates for model parameters 
and reduce uncertainties in model outputs. This method considers all model parameters; thus, it 
guarantees that no important effects are overlooked by generating a full set of sensitivities. A full 
set means that the sensitivities with respect to all parameters are computed, without making an a-
priori judgment as to which one is important.  

 
To demonstrate the use of analytical derivatives in uncertainty analysis, the model described in 
Figure 1 is used to predict total discharge to the river from both aquifers.  The discharge is 
estimated at 80,000 ft3/day by MODFLOW.  The modified MODFLOW is used to calculate both 
the derivatives of head at observation points and the total discharge to the river.  The derivatives 
calculated using the modified MODFLOW are then fed to PEST to calculate the uncertainty in 
predicted discharge to the river.    PEST calculates upper and lower bounds of the predicted 
discharge.   The upper and lower bounds of the discharge are ~85,500 ft3/day and ~76,300 
ft3/day respectively.  These bounds are estimated as the upper and lower critical points at a 
predefined value of the objective function (Doherty 2002).  The same uncertainty calculations 
were performed using PEST numerical derivatives.  Both methods produced similar results.  The 
advantage of using analytical derivatives was limited to the cost saving in runtime and accuracy. 



 For example, in the case of numerical derivatives, MODFLOW needed to be modified to write 
the head and flux values with greater precision in order for PEST to converge to the predefined 
value of the objective function.  This issue was irrelevant in the case of analytical derivatives 
supplied by the modified version of MODFLOW.  The analytical derivatives are calculated 
accurately by MODFLOW and provided to PEST directly and the solution converged faster to 
the predefined value of the objective function.  
 

CONCLUSION 
 
The presented work illustrates the great promise offered by automatic differentiation for 
analytically computing derivatives. The results of this work demonstrated that analytical 
calculations are more accurate, take less time to compute, and their values are not functions of 
the size of perturbations the analyst has chosen to use, or the method of differentiation.  As a 
result, automatic differentiation provides great benefits for both sensitivity and uncertainty 
analysis; especially in the case of problems with complex parameter structure, spatial and 
temporal variations in parameters, and highly nonlinear problems. In addition, using ADIFOR 
facilitates analytical calculations of the dependent variable with respect to numerical grid spacing 
without modifying the grid. This capability enables modelers to decide upon grid spacing using 
systematic and logical procedures. 
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