Analyzing Watersheds to Determine Sources of Bacteria at Two of Iowa’s Beaches

Janice Boekhoff
Research Geologist
IDNR-Iowa Geological Survey

Photo by Ray Anderson
Indicator Bacteria

• Indicator bacteria are used to suggest the presence of pathogens (disease-causing organisms) in water

• Pathogens can come from the feces of any warm blooded animal

• Indicator bacteria are easy to collect and analyze, relatively safe to handle and usually present when pathogens are present

• These indicator bacteria are harmless
 – Fecal coliform, *E. coli*, enterococci

• Intensive watershed investigations help to identify the sources of indicator bacteria
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
Watershed: Lake
89:1
Watershed: Lake 919:1

Photo by Ray Anderson
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
Type of Water Body

George Wyth
Borrow Pit for Highway 380
- Little flow
- Little dilution
- Fewer sources

Backbone
Lake Created by Damming River
- All water flows past beach towards dam
- Dilution of sources
- More sources
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
Possible Sources

George Wyth
• Geese
• Human (sewage pipes ruled out, but not effects from bather density)

Backbone
• Geese
• Domestic animals
• Wild animals
• Manure spread on farm fields
• Septic systems
• Sewage lagoons
• Human (bather density)
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
George Wyth 2003 Beach Monitoring

Colony Forming Units/100mL

Rainfall (inches)

E.coli
One-Time Maximum
Rainfall
Intensive Watershed Analysis

- Watershed:lake ratio
- Land use
- Type of water body
- Possible sources
- Response to rainfall
- Pattern of high bacteria levels
Pattern of High Bacteria Levels

George Wyth
- High Ankle Zone
- Decreased levels in knee and chest zone

Backbone
- High everywhere at beach, especially in chest zone
Summary

• Analyzing many characteristics of a watershed help to determine the sources of bacteria
• Intensive watershed investigation is one tool used to identify the source of bacteria
• Other experimental source tracking tools are being used at Iowa’s beaches (DNA ribotyping, Antibiotic resistance analysis)
Acknowledgements

• The University Hygienic Laboratory (UHL) performed all analyses and reported all results, Michael Schueller and John Miller coordinate the beach sampling, and Nancy Hall provides expertise in interpretation of the results.
• David Sunne and Mary Shea for their assistance in the intensive watershed investigation at Backbone
• Lori Eberhard and Gary Dusenberry for their assistance in the intensive watershed investigation at George Wyth
• Rick Martens, Joe Sanfilippo, Mike Wade from the field office for their assistance in the watershed investigation
• Rick Langel and Eric O’Brien, Iowa Geological Survey, for their hours of work in Backbone and George Wyth watersheds
• Michelle Wilson, Janet Ott and Sherry Arntzen of the Iowa DNR-Parks, Recreation and Preserves Division helped coordinate this project
Extra Slides
How to prevent pathogens from entering water

- Use toilet facilities whenever possible
- Keep clean diapers on children
- Do not swim if you have diarrhea
- If you have a septic system, make sure it is working properly
- Install buffers and fences to keep livestock out of creeks
To minimize your risk of becoming ill while swimming

- Avoid swimming after heavy rainfalls
- Avoid swallowing the water
- Shower/wash hands after swimming
Status of State-Owned Beaches

Beach Status (days)

<table>
<thead>
<tr>
<th>Year</th>
<th>Below EPA Geometric Mean Guideline for E. coli</th>
<th>Exceeded EPA Geometric Mean Guideline for E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>97.6%</td>
<td>0%</td>
</tr>
<tr>
<td>2001</td>
<td>96.0%</td>
<td>0%</td>
</tr>
<tr>
<td>2002</td>
<td>95.7%</td>
<td>0%</td>
</tr>
<tr>
<td>2003</td>
<td>96.7%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Swimming Season

2000 2001 2002 2003