a USGS

science for a changing world

Evaluating uncertainty in areas
contributing recharge to wells
for water-quality network design

Jeff Starn, Hydrologist, Connecticut
National Water Quality Assessment (NAWQA)




Take-home message

m “ ..science aims to separate the probably true from the
definitely false...”t

" More effective monitoring networks can be developed by
considering uncertainty in ground-water-flow paths

%USGS 1Robert Lempert, EOS, v84, n30, p 285



Three sources of uncertainty that affect
simulation of areas contributing recharge

" Boundary and internal flow rates, including recharge
" Often estimated outside model
" May vary in time, such as flows from irrigation wells
" Not discussed in this presentation
" Heterogeneity of hydraulic conductivity
= Briefly illustrated using 3 examples
" Uncertainty caused by model calibration to sparse data
" |llustrated using a Monte Carlo model with parameter correlation
" Main topic of this presentation
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Sources of uncertainty in 4 modeled areas

Source of Tampa York Modesto Woodbury
uncertainty Florida Nebraska California Connecticut
Small-scale conduit— conduit— hydrofacies |none
heterogeneity |sinkholes/ irrigation —vertical simulated
fractures RS
Large-scale layers layers hydrofacies |zones
heterogeneity —horizontal
Geology karst/ alluvial alluvial glacial/
fractured fractured
rock rock




Heterogeneity in the Florida study area

Small-scale hydraulic
conductivity variation

*Sinkholes that penetrate
vertically

*Dissolution along fractures in | "*ﬁ g
a specific horizontal layer i l'
: 1
Large-scale hydraulic LA LR
! .'|£' .;4|I *;. '|' : |

conductivity variation Yy

‘E]ul"'

*Geologic layers (not shown)

*Vertical only
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Heterogeneity in the Nebraska study area

Small-scale hydraulic
conductivity variation

e[_ocations of wells
*Screened depths of wells
*Active or abandoned wells

Large-scale hydraulic
conductivity variation

*Geologic layers

*Vertical only
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Heterogeneity in the California study area

Small-scale hydraulic
conductivity variation

Hydrofacies category

BB Gravel
Sand

Muddy sand
B Mud

Large-scale hydraulic
conductivity variation

*Hydrofacies category

«Additional clay layer (not
shown)
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Heterogeneity in the Connecticut study area

Large-scale hydraulic
conductivity variation
by zone

*Fluvial
eDeltaic
*Till

\ 4 HuWa[
*Streambed | ) Uehbais Till deposits

Basalt—underlying -

glacial units ké‘\,ﬁ\

Deltaic

;i 1,000 500
deposits
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Model Is used to estimate mean and
standard deviation of hydraulic
conductivity

Example: mean and 2 times
standard deviation for basalt

Till

Basalt
B Deltaic
2 Fluvial

Frequency

I
B Streambed
[

-4 -2 0 2 4

0
= Logarithm of hydraulic conductivity, in feet/day




Hydraulic conductivity estimates are
correlated to various degrees

Examples:
Fluvial
« Till and basalt are strongly
s . correlated (low scatter/high slope)
<A « Till and streambed are weakly
N independent (high scatter/low

S e - slope)
o |- R Deltaic




Uncertainty in hydraulic conductivity zones
was assessed using a probabilistic model

" Probabilistic model did account for
" correlation of hydraulic conductivity

" standard deviation of hydraulic
conductivity

" large-scale heterogeneity

" But did not account for
" small-scale heterogeneity
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Probabilistic modeling allowed a more
effective monitoring network

A coarse model was constructed using existing data
Predictions from the coarse model were not accurate

A coarse probabilistic model showed that monitoring
wells should be installed over a broad area

New monitoring wells were installed
Refined model made more accurate predictions

Uncertainty In predictions using the refined model
was less than in the coarse model




Recharge area to a public-supply well
using a coarse ground-water-flow model
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MTBE was detected in the supply well,
but simulated plume does not reach well
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Probabilistic model showed a 20-40%
chance that the MTBE source was in the
_Simulated recharge area
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Refined model showed a different
recharge area than the coarse model
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Refined model showed >40 % chance
MTBE was in the simulated recharge area
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Probabilistic model can be used to put error
bounds on age distributions

Age distributions from 13
model runs using parameter
mean, standard deviation,

and correlation

Age, in years

0% 20% 40% 60% 80% 100%
Cumulative recharge to well, in percent
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Conclusions

" More effective monitoring networks can be
developed by considering uncertainty

" | evel of uncertainty can be decreased by collecting
more data and refining model
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Conclusions

" Source-area uncertainty increases with distance and
travel time from the well

" Error on vulnerability indicators such as ground-
water age can be quantified
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