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Outline

1) Flushing time– an number of classic methods 

•Tidal Prism
•Fresh water residence
•Salt conservation
•Modeling (Hierarchy) 
•Dye Studies

2) Recent Results on estuarine dispersion
•Processes that drive dispersion
•Dispersion estimates from salt budgets and dye studies
•Effects of stratification

3) Dispersion and the nature of material

Dissolved, particulate, conservative or reactive.

4) Dispersion of discharge into coastal ocean.
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Use of salt budgets to  Estimate dilution
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Works well if cross channel and vertical mixing is rapid
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Fischer et al (1979)

Biggest contributor to dilution is the estuarine circulation (Qo)

Because Qo > Qf > Qe (But with River flow there is no Estuarine Circulation)

Ultimately a dispersive process!!



Estuarine Dispersion (weak vertical Mixing)
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Estuarine Dispersion (weak vertical Mixing)
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Estuarine Dispersion  (Strong Vertical Mixing)
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Estuarine Dispersion
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But again only applicable for time-scales long compared to mixing time scales

Drives Down Gradient flux (identical to Fickian diffusion)

Shear

Shear Dispersion Taylor (1954)
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Mixing time – how long does it take material to mix in ALL three dimensions?

Use example in Hudson (Chant et al. JPO 2007; Geyer and Chant JGR 2008)
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During neap tides mixing time is long– many days

Mixing weak– but so is dispersion! 



During spring tide vertical mixing is rapid
But again dispersion is weak (but here consistent with theory)



Estuarine Dispersion Estimated with salt field
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eff = Using typical values for the Hudson Keff~1000 m2/s

Note that L inversely proportional to Q 



Lerczak, Geyer and Chant (JPO 2006)



Geyer, Chant and Houghton (JGR 2008)

Estimates of dispersion from dye
ALWAYS less than that from salt

Lerczak, Geyer and Chant (JPO 2007)

Estimate of dispersion from Dye release….

…verses that from salt budget



The large value of shear dispersion is only applicable to substances (such 
as salt) that have been in the estuary long enough to be broadly
distributed in the vertical.

Material in surface waters in stratified estuaries will not experience 
strong dispersion and thus will quickly be ejected from estuary.

Ejection of surface waters is most pronounced during neap tides when
river is highly stratified.

Chant et al (JPO 2008)

After exiting the estuary discharge and associated material
is subject to plume dynamics



Estuarine Dispersion (weak vertical Mixing)
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Estuarine Dispersion (weak vertical Mixing)
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The large value of shear dispersion is only applicable to substances (such 
as salt) that have been in the estuary long enough to be broadly
distributed in the vertical.

Material in surface waters in stratified estuaries will not experience 
strong dispersion and thus will quickly be ejected from estuary.

Ejection of surface waters is most pronounced during neap tides when
river is highly stratified.

Chant et al (JPO 2008)

After exiting the estuary discharge and associated material
is subject to plume dynamics



Down-welling – rapid moving current 
Trapped To New Jersey Coastline

Upwelling and weak winds
Bulge and transport along LI coast. 

Hunter, Chant and Wilkin (submitted to JGR)

Wind Wind



Structure and impact of “Bulge” formation

Choi and Wilkin (JPO 2007) 

• Limits flow to 
coastal current

•Provides 
“Chemostat for 
biogeochemical 
processes 
(Wright et al. 
Frazer et al, 
Chen et al. Cahill 
et al. Xi et al.) 

•Bulge highly 
sensitive to  
winds and 
ambient shelf 
circulation 
(Zhang et al. 
Castelao et al.)
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Rapid drawdown of Nutrients in bulge region. Low in-organic nitrate transport in coastal current 
but rather transport of assimilated nitrogen (and metal contaminants!) 

Schofield et al (submitted to JGR)
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Castelao et al. in press (JGR), GRL(2007)

Inner shelf appears more responsive to 
persistent upwelling winds. 

Flow converges at mid-shelf front  producing jet

Bulge in Apex feeds mid-shelf jet

Rapid cross-shelf transport

Glider Section

Salinity

SST Discharge

Pathways for less reactive dissolved  material



Red line depicts mean
2005-2006 fresh water
Transport

Broad recirculation
Off LI coast

Off-shore jet on NJ
Coast

Broadly distributed by
100 km down  stream and
Cut-off at shelf valley

Zhang, Chant and Wilkin (submitted to JPO)



Zhang, Chant and Wilkin (submitted to JPO)

Seasonal Variability in fresh water pathways



Conclusions

1) Water quality models need to carefully consider effects of estuarine 
stratification. Critical parameters are the vertical and cross-channel 
mixing times.

2) Use of residence time only valid for substances with comparable 
distribution and time residency of salt field.

3) Material discharged in surface of stratified estuary will be poorly 
modeled using standard flushing time models.

4) Fate of material on shelf complex– but captured in observational and 
modeling studies

Visit us at:  marine.rutgers.edu/cool
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