A Review of Setting Appropriate Reach Length for Biological Assessment of Boatable Rivers

Biological Assessment of Boatable Rivers

• Critical issues: target reach length
• Define data quality objective
 – Reach length should enhance capacity to meet
 – But consider potential secondary uses
• Reach length decision often may be made with insufficient information
Ideally.....

- The effort applied is the minimum that will allow the stated objectives to be addressed
- Question will influence the sampling effort required

\[
\text{Species' Relative Abundance} < \text{Absolute Number of Species}
\]

- Implications for biological assessment programs...

Efficient Sampling Protocols → Potential Cost Savings → Enhance other aspects of study design
What is a reach?

- A length of stream between breaks
 - channel slope
 - local side-slopes
 - valley floor width
 - riparian vegetation
 - and bank material (Frissell et al. 1986)
- Least physically discrete unit in a hierarchical context
- Exceedingly useful scale for describing medium- and long-term effects of human activities on streams
- Bioassessment context – used to describe the area of a fluvial system that samples are collected or other measurements are taken
 - Linear systems – it is quantified as some channel length
Reach Length in Boatable Rivers

- Long reaches (e.g., multiple kilometers)
 - **Advantages**
 - Good for describing the mean condition of a large river section
 - Minimize the influence of
 - Small scale natural conditions
 - Localized impairments
 - **Disadvantages**
 - May mask small scale habitat conditions and impairments.
 - Decreased sensitivity of indicators to detect linkages between
 - Local river conditions
 - Drivers of condition
 - High level of effort
Reach Length in Boatable Rivers (cont.)

- Short reaches (e.g., < 1 kilometer)
 - **Advantages**
 - Sensitive to small scale habitat conditions and impairments.
 - Increased sensitivity of indicators to detect linkages between
 - Local river conditions
 - Drivers of condition
 - Reduced level of effort
 - **Disadvantages**
 - May not be good for describing the mean condition of a large river section
 - May be too sensitive to
 - Small scale conditions
 - Localized impairments
Approaches used for setting reach length

- Best professional judgment
- Past history
- Management objectives
- Response of biological parameters
- Geomorphology (independent of biology)
Setting reach length using biological information

(Response of Biological Parameters)

- **Rationale**
 - Aquatic biota as indicators

- **Approach**
 - Over-sampling at series of sites
 - Cover the gradient of conditions
 - Determine reach length when required data quality has been achieved
 - Reach indicator asymptote
 - Level of variability (similarity)
Approaches used for setting reach length
Biological: Framing the reach length based on data

Option 1: Fixed length (Examples: 500m)

• Advantages/Proponents
 – Ease of application
 – Utility in planning

• Disadvantages/Opponents
 – Unequal sampling effort relative to river size
 – May not encompass a sufficient number of habitats
 • Difference detected may be due to habitat differences
 • Could partition out habitats
Approaches used for setting reach length

Biological: Framing the reach length based on data

Option 2: Multiples of the Wetted Width (40X)

• **Advantages/Proponents**
 – As a system gets bigger, habitat units get bigger
 – Effort should increase proportionally

• **Disadvantages/Opponents**
 – Differing amounts of effort are being applied across sites
 – Difficult to apply on impounded systems
Approaches used for setting reach length: Biological Examples…

- Hughes et al. 2002
 - Sampled 45 raftable Oregon rivers reaches for an entire day
 - 85X MWW to collect 95% of the species collected in 100 MWW or 8 hours
 - Collection of all species → 300X MMW on average

- Hughes and Herlihy 2007
 - Sampled 45 raftable Oregon river reaches for an entire day (1-d)
 - 50X MWW, or a catch of more than 120 individuals, produced IBI score that varied <10% of 1-d sample

- Flotemersch and Blocksom 2005
 - Sampled 60 boatable Mid-Western rivers
 - 1 km total shoreline shocked was sufficient for limiting the change in metric scores to 20%
Approaches used for setting reach length

Biological Examples...

- Comparison of 3 studies
 - Began with different reference conditions (100 channel widths vs 2km)
 - different maximum distances (100 channel widths vs 2 km)
 - different values for acceptable variability (5, 10, and 20%)
 - produced 3 different results

- The question(s) being asked and the data quality needs should drive the selection of reach length.

- Issue to consider: How much weight should be placed on secondary uses of data?
Approaches used for setting reach length independent of biology (Geomorphology)

Meander cycles...

- Uses geomorphology of the system
- Origins in work by Leopold et al. (1964)
 - In meandering streams $20 \times MWW = \text{one complete meander}$
 - Fluvial characteristics are repetitive and cyclical
 - Should theoretically include all major habitats types
 - By default, include all resident biota
- Problematic in altered systems - can’t identify meander
 - Highlights value that one meander roughly $= 20 \times MWW$
Approaches used for setting reach length independent of biology

Meander cycles…

Example:

- USGS-NAWQA
 - 20x wetted width (1 meander)
 - Minimum 500m
 - Ensure representativeness of biological data
 - Maximum of 1000m
 - To minimize crew fatigue
 - Used for all indicators
What’s the Correct Answer?

- No single design strategy will allow all research and applied questions to be addressed
- Appropriate reach length…

Intensity of data collection for a particular sampling event

Number of times that sampling can occur

Data quality requirements

Current and projected resource availability
When selecting a reach length, or conducting research for setting reach length…

- Consider…
 - The question being addressed
 - The level of resolution required
 - Precision
 - Accuracy
 - The statistical approach
- Ensure that the reach length is balanced with
 - Available resources
 - Logistical constraints
 - Safety issues
Consider Novel Designs...

• Split-scale design
 – Long sampling reach - estimate broader-scale characteristics
 – Split into several small sub-reaches
 • Generate multiple data points
 • Determine conditions at a smaller scale
 • Estimating spatial variability within the larger scale
 • Reduce minimize risk of crew fatigue
 • Permit use of multiple crews.
Consider Novel Designs...

- 40X-80X
 - In West → response is documented
 - In East → results in too many fish to be feasible
- Option – distribute effort

- Time
- Sample size
Research Needs…

• Boatable rivers (Large and great rivers)
 – Efforts to account for, or partition habitat variability that longer reach lengths seek to encompass
 • Logistically feasible reach lengths
 • Increase the ability to detect habitat specific influences potentially masked by a designs that composites across habitats
What is the minimum significant (p<0.1) change in IBI at a site I can detect 90% of the time for different sample sizes?
<table>
<thead>
<tr>
<th>Reach Length</th>
<th>IBI Change</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 CW</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>10 CW</td>
<td>10</td>
<td>118</td>
</tr>
<tr>
<td>10 CW</td>
<td>5</td>
<td>470</td>
</tr>
<tr>
<td>20 CW</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>20 CW</td>
<td>10</td>
<td>128</td>
</tr>
<tr>
<td>20 CW</td>
<td>5</td>
<td>510</td>
</tr>
<tr>
<td>40 CW</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>40 CW</td>
<td>10</td>
<td>131</td>
</tr>
<tr>
<td>40 CW</td>
<td>5</td>
<td>526</td>
</tr>
<tr>
<td>80 CW</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>80 CW</td>
<td>10</td>
<td>131</td>
</tr>
<tr>
<td>80 CW</td>
<td>5</td>
<td>522</td>
</tr>
</tbody>
</table>
Questions?