Examining Impaired Waters from Different Angles
Multi-Prong Monitoring to Support the Lower Minnesota River Model

Catherine E. Larson, Metropolitan Council Environmental Services
William F. James, U.S. Army Engineer Research & Development Center
Philip J. Murphy, HydrO₂, Inc.
Gary G. Rott, Minnesota Pollution Control Agency
Thomas A. Winterstein, U.S. Geological Survey
Sponsors

Metropolitan Council
Lower Minnesota River Watershed District
Metropolitan Airports Commission
Minnesota Pollution Control Agency
US Army Corps of Engineers
US Geological Survey
First, the truth about water-quality monitoring in Minnesota…
Lake Pepin Watershed

Lake Pepin Basins

<table>
<thead>
<tr>
<th>BASIN</th>
<th>Feature</th>
<th>Area (Kilometers2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannon River Basin</td>
<td>Lake Pepin Watershed</td>
<td>122,575</td>
</tr>
<tr>
<td>Minnesota River Basin</td>
<td></td>
<td>218,480</td>
</tr>
<tr>
<td>St. Croix River Basin</td>
<td></td>
<td>105,368</td>
</tr>
<tr>
<td>Upper Mississippi River Basin</td>
<td>Lake Pepin Watershed with in Minnesota</td>
<td>105,368</td>
</tr>
</tbody>
</table>

US Map: Minnesota River Basin Data Center
Sources Upstream of Lake Pepin

Mississippi River at Anoka
- NOx: 80%
- TSS: 82%
- TP: 63%

St. Croix River at Stillwater
- NOx: 17%
- TSS: 15%
- TP: 29%

Minnesota River at Jordan
- TKN: 48%
- TSS: 82%

Based on Median Pollutant Mass Load (tonnes/year) from 1992 - 2001

Regional Progress in Water Quality, Metropolitan Council, 2004
Bridge Over Troubled Waters

- **Waste Load Allocation Study (1985)**
 - Lower Minnesota River: BOD/DO, NH4
 - Effluent limits for point sources
 - 40% reduction goal for nonpoint sources

- **Impaired Waters & TMDL Studies**
 - Mississippi & Minnesota Rivers: Turbidity (2009)
 - Lake Pepin: Nutrients (2009)

- **Water-Quality Models**
 - Minnesota River Basin, miles 300-40 (HSPF)
 - Mississippi River Model, Pools 2-4 (ECOM-RCA)
 - Lower Minnesota River, miles 40-0 (?)
Lower Minnesota River

Problems

- Oxygen, turbidity, bacteria, PCBs, mercury
- Excessive algae, nutrients, sediment

Stressors

- Large agricultural watershed
- Rapid growth in SW Metro Area
- Point-source dischargers
- Navigation

Minnesota Valley National Wildlife Refuge
Scoping Workshop, February 2003

• What are the issues and our priorities?
 – Oxygen, ammonia, nutrients, sediment

• Which model should we apply?
 – CE-QUAL-W2 Model, USA-ERDC
 – Mississippi River Model, HydroQual & MCES

• What are the model data requirements?
 – Tom Cole & others, USA-ERDC
 – Pooled experience of partners
Monitoring Program, 2003-2006

• Base monitoring over three years
 – River, tributaries, and discharges

• Intensive low flow monitoring
 – River flow < 2000 cfs during June-Sept

• Special field studies
 – Hydrodynamics (e.g., mixing, ground water)
 – Oxygen (e.g., reaeration, oxygen demand)
 – Nutrients (e.g., P dynamics, sediment fluxes)
 – Algae (e.g., growth factors, oxygen balance)
 – Sediment (e.g., distribution, characteristics)
Long-Term Water-Quality Monitoring Program
Metropolitan Council Environmental Services

[Map showing water-quality monitoring sites in the Metropolitan Area.]
Ground-Water Inflows

- Conducted at low river flows in late summer
- Measured river flow at multiple sites with ADCP
- Measured tributary flows near base of bluff
- Estimated ground-water inflows or outflows by difference
- Concluded that ground-water inputs are minor
Sediment Bed Assessment

- Conducted at low river flows with seismic profiler
- Profiled sediment along shores and transects every 200 ft
- Collected some sediment cores and noted sediment type
- Metropolitan Council later mapped the sediment bed
River Sediment Types

- Gravel-Rock
- Gravel-Sand
- Hardclay
- Sand
- Silt
- Silt-sand

Sediment Bed Map

Minnesota River, Mile 1
Mixing Characteristics

Vertical Difference in Dissolved Oxygen > 0.5 mg/L

<table>
<thead>
<tr>
<th>Date</th>
<th>Discharge</th>
<th>Average water temperature, degrees C</th>
<th>River Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>39.4</td>
</tr>
<tr>
<td>July 29, '03</td>
<td>2880</td>
<td>27.0</td>
<td>YES</td>
</tr>
<tr>
<td>Aug 21, '03</td>
<td>1160</td>
<td>27.1</td>
<td>YES</td>
</tr>
<tr>
<td>Sep 24, '03</td>
<td>554</td>
<td>16.4</td>
<td>YES</td>
</tr>
<tr>
<td>Apr 22, '04</td>
<td>1640</td>
<td>13.9</td>
<td>YES</td>
</tr>
<tr>
<td>Jun 2, '04</td>
<td>16900</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Aug 11, '04</td>
<td>4880</td>
<td>20.0</td>
<td></td>
</tr>
</tbody>
</table>
Surface Dissolved Oxygen (mg/L)
Lower Minnesota River, 8/21/03

Distance from mouth (miles)
Distance along transect (ft)

Surface Dissolved Oxygen (mg/L)
Lower Minnesota River, 8/21/03
Representative Sampling
Equal-Width-Increment Versus Discrete
Phosphorus Fractions: Soluble & Particulate
Percent of Load, Minnesota River at Jordan, 2006

- Soluble P
- Loosely-bound PP
- Iron-bound PP
- Labile organic PP
- Aluminum-bound PP
- Calcium-bound PP
- Refractory organic PP

Green = Biologically Labile PP
Blue = Biologically Refractory PP

Nutrient Dynamics and Budgetary Analysis of the Lower Minnesota River: 2003-2006, W.F. James, USA-ERDC, 2008
Phosphorus Sorption

- Measured equilibrium P concentration, the tipping point for P attachment to particles
- EPC roughly equals mean ambient SRP (.11 mg/L)
- Concluded that TSS buffers SRP at higher flows but algae & point sources regulate P dynamics at lower flows
Chlorophyll-a & Soluble Reactive P Concentrations
Minnesota River at Jordan & Ft Snelling, 2004-2006

Nutrient Dynamics and Budgetary Analysis of the Lower Minnesota River: 2003-2006, W.F. James, USA-ERDC, 2008
Sediment P Release Rates

- Related to iron-bound P
- Related to silt content
- Mean Oxic = 4 mg/m²/d
- Mean Anoxic = 21 mg/m²/d
- <10% of total P budget

Nutrient Dynamics and Budgetary Analysis of the Lower Minnesota River: 2003-2006, W.F. James, USA-ERDC, 2008
Percent Load Contributions in 2006

Sample of Budgetary Analyses for 2004-2006

<table>
<thead>
<tr>
<th>Source</th>
<th>Flow</th>
<th>TSS</th>
<th>TKN</th>
<th>NOX</th>
<th>NH4</th>
<th>TP</th>
<th>SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>River at Jordan</td>
<td>95.0</td>
<td>91.6</td>
<td>92.9</td>
<td>97.3</td>
<td>89.1</td>
<td>88.4</td>
<td>82.9</td>
</tr>
<tr>
<td>Monitored Streams</td>
<td>3.6</td>
<td>8.4</td>
<td>5.5</td>
<td>1.2</td>
<td>6.7</td>
<td>7.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Point Sources</td>
<td>1.5</td>
<td>0.0</td>
<td>1.6</td>
<td>1.5</td>
<td>4.2</td>
<td>4.2</td>
<td>12.7</td>
</tr>
<tr>
<td>Retention (-) or Export (+)</td>
<td>+1.1</td>
<td>-22.0</td>
<td>-3.6</td>
<td>-3.9</td>
<td>+43.2</td>
<td>-10.9</td>
<td>-12.7</td>
</tr>
</tbody>
</table>

Nutrient Dynamics and Budgetary Analysis of the Lower Minnesota River: 2003-2006, W.F. James, USA-ERDC, 2008
Summer Low Flow Studies

- **Intensive river monitoring (MCES)**
 - Weekly sampling at 10 sites for 8-12 weeks

- **Synoptic sonde survey (MPCA)**
 - Sondes suspended from buoys deployed for several days at 6 sites plus grab samples

- **Oxygen dynamics assessment (HydrO₂)**
 - Measure oxygen sources and sinks from the atmosphere, sediment, and water
Compared to Low Flow Target of 2000 cfs
Dissolved Oxygen (mg/L), Minnesota River at Mile 3.5
MCES Continuous Monitoring, July-September 2003
Oxygen Dynamics Assessment
HydrO₂, Inc. with MCES & MPCA

- Reaeration
- Atmospheric diffusion
- Community oxygen metabolism
- Water-column production and respiration
- Sediment oxygen demand
- Community substrate oxygen demand
Figure 4, Minnesota River Reaeration

Lower Minnesota River: Oxygen Dynamics Assessments, HydrO₂, Inc., 2007
2006 Minnesota River GPP:R

River Mile

gmO2/m²/day

July

Aug/Sep

Lower Minnesota River: Oxygen Dynamics Assessments, HydrO₂, Inc., 2007
Lower Minnesota River: Oxygen Dynamics Assessments, HydrO₂, Inc., 2007
Challenges

- Equipment Deployment
- Navigation Effects
- Backwashing
- Black Dog Generating Plant
- High Quality Effluent
- CBOD Measurement
- TOC Measurement
Navigation Effects on Water Quality
Mean Annual CBOD5 Concentration
River and Effluent, 1985-2004

CBOD5 (mg/L)

85-89 90-94 95-99 00-04

MI 39.4 Blue Lake Seneca
Preliminary Model Results

- **TDS**: Graph showing the trend of Total Dissolved Solids (TDS) over days.
- **ISS**: Graph for Inorganic Suspended Solids (ISS) showing fluctuations.
- **PO4**: Graph for Phosphate (PO4) indicating variations.
- **NH4**: Graph for Ammonium (NH4) displaying its concentration over days.
- **NO3**: Graph for Nitrate (NO3) with changes over time.
- **DSI**: Graph for Dissolved Soluble Inorganic (DSI) showing peaks and troughs.
Paddle on down to our website:
www.metrocouncil.org/environment/Water/LMRM/