Multivariate Methods With Nondetects

Dennis Helsel

Practical Stats

Common Goals of Multivariate Procedures

- Classify observations into groups
- Test for differences or trends based on multiple measures
- Classify and relate variables to one another

Methods for dealing with nondetects

- NOT Substitution! This adds invasive data
- For one RL:
 - Rank data and run procedure on the ranks
 - Use a nonparametric method

For 1 RL, run procedure on the ranks

- PCA on ranks
- Discriminant Function on ranks
- All nondetects are tied with each other at the lowest rank:
- <1 <1 <1 3 7 10 18 data
 - 2 2 2 4 5 6 7 ranks
- MANOVA, Cluster Analysis have nonparametric analogues, so no reason to do this approach

For 1 RL, use a nonparametric method

- ANOSIM (Nonparametric MANOVA)
- Test for seriation (Nonparametric Trend Test)
- Nearest Neighbor Cluster Analysis
- Nonmetric Multidimensional Scaling

General Method: ANOSIM and test

Element by element Kendall's tau correlation between similarity matrices

Test for seriation

For trend, the explanatory matrix contains the number of time steps between measurements

ANOSIM

For tests between groups, the similarity matrix is a 1 if two values are in the same group, and a 0 otherwise.

General Method

For other, regression type problems, the similarity matrix uses something like Kendall's tau

Permutation p-values

Observed test statistic higher than all 1000 results in permutations, so p-value = 0.001

Nearest-neighbor clustering

 ranks of distances between locations in multivariate space

= Practical Stats Methods for dealing with nondetects

- For more than one RL:
 - 1. Compute Kaplan-Meier percentiles and run a procedure on these 'scores'
 - 2. Use maximum likelihood (MLE) versions of methods, where those exist

For >1 RL, compute procedure on K-M percentiles

 existing tests take multivariate measures and convert to a univariate composite score. Test the scores for differences between groups. Scores are combinations of K-M percentiles for each variable

Kaplan-Meier

(nonparametric method)

- K-M estimates the survival function S, the probability of <= each detected value
- S estimates the empirical CDF (percentile function) of the original data
- Percentiles only estimated for detects, not nondetects
- Percentile values are affected, however, by the number of and DL value

Kaplan-Meier survival curve

MLE methods for >1 RL

- Multiple regression analogue: predicting a Y with nondetects from multiple explanatory variables.
- Use MLE with an assumed distribution (normal, lognormal, other) to determine the best predictors.
- Censoring only allowed for the Y variable
- Has been extended to factor analysis, but software not readily available

2nd Edition will be even better! Nondetects ondetects And nd 353 malysis Data Analysis Consult R. Halled

Statistics for Censored **Environmental Data**

Manua

Helsel (2005) www.PracticalStats.com / nada

Stop by our booth in the right corner of the exhibit hall