Diagnostic Tools to Evaluate Impacts of Trace Organic Compounds on Aquatic Populations and Communities
Tt Project Team

- Kent Thornton, FTN Associates Ltd.
- Kelly Munkittrick & Karen Kidd
 Univ. New Brunswick
- Steven Bartell, E2 Consulting Engineers, Inc.
- Katherine Kapo, Montani Run LLC
- Abby Markowitz, Condatis
WERF Research Challenge

- Understand, manage, and communicate perceived and potential risks of trace organic compounds (TOrCs)
- Focus on TOrCs in surface waters from point and non-point sources
- Coordinate with other organizations
Trace Organic Compounds - TOrCs

✓ Organic compounds known or suspected to be released to the aquatic environment

✓ Not commonly regulated or monitored

✓ Potential risk to ecological health relatively unknown
Research Objectives

- Develop and apply a procedure to prioritize TOrCs
- Develop and test diagnostic tools to identify TOrCs by source type
- Develop a relational database of TOrC exposure data
- Develop a Collaboration Plan for fostering partnerships among stakeholders in Phase 2
Project Focus

- Organic contaminants of emerging concern
- Surface water only
- Ecological, not human health
- Wastewater-influenced sites
- Effects on aquatic populations and communities
TOrC Prioritization Approach

Compile:

- TOrC occurrence data
- TOrC fate information (ECOSAR, PBT Profiler)
- Predicted toxicity and endocrine activity thresholds (ECOSAR, PBT Profiler, EU, FDA)
Prioritized TOrCs based on either:

1) Maximum observed concentration vs. conservative effect thresholds

2) Max vs. thresholds + persistence and bioaccumulation potential

3) PBT – not occurrence-based
Occurrence Data

- > 100 studies examined; 70 studies used
- Information from > 700 sites
- Over 500 TOrCs, including 48 high risk, high production volume TOrCs (Muir, et al 2009) with no occurrence information
- > 30 monitoring organizations represented
Types of High Priority TOrCs by Approach

- **Risk**
 - Deodorizer/Fragrance: 17%
 - Flame Retardant: 37%
 - Industrial Chemical: 5%
 - Natural Hormone/Steroid: 8%
 - PAH: 6%
 - Personal Care Product: 8%
 - Pharmaceutical: 10%
 - Plasticizer: 15%
 - Pesticide: 2%
 - Surfactant: 7%

- **Risk + P + B**
 - Deodorizer/Fragrance: 39%
 - Flame Retardant: 13%
 - Industrial Chemical: 2%
 - Natural Hormone/Steroid: 5%
 - PAH: 3%
 - Personal Care Product: 10%
 - Pharmaceutical: 2%
 - Plasticizer: 8%
 - Pesticide: 13%
 - Surfactant: 5%

- **P + B + T**
 - Deodorizer/Fragrance: 8%
 - Flame Retardant: 13%
 - Industrial Chemical: 3%
 - Natural Hormone/Steroid: 6%
 - PAH: 2%
 - Personal Care Product: 6%
 - Pharmaceutical: 8%
 - Plasticizer: 24%
 - Pesticide: 15%
 - Surfactant: 13%
High priority TOrCs that are monitored infrequently

<table>
<thead>
<tr>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-methylcholanthrene</td>
</tr>
<tr>
<td>4-nonylphenol diethoxycarboxylate</td>
</tr>
<tr>
<td>4-nonylphenol monoethoxycarboxylate</td>
</tr>
<tr>
<td>Acetyl cedrene</td>
</tr>
<tr>
<td>Benfluralin</td>
</tr>
<tr>
<td>Celestolide (ADBI)</td>
</tr>
<tr>
<td>Clotrimazole</td>
</tr>
<tr>
<td>Di-N-octyl phthalate</td>
</tr>
<tr>
<td>Musk xylene</td>
</tr>
<tr>
<td>Novobiocin</td>
</tr>
<tr>
<td>Oryzalin</td>
</tr>
<tr>
<td>OTNE</td>
</tr>
</tbody>
</table>
Results: Risk-based Prioritization Approach

- Few pharmaceuticals ranked as high priority based on either predicted toxicity or endocrine activity thresholds
 - Exceptions are steroids and hormones
Results: Risk-based Prioritization Approach

Most sensitive endpoint is predicted chronic toxicity rather than estrogenic activity for most high priority TOrCs.

- Exceptions are the few hormones.
Lists of high priority TOrcs should **not** be taken as monitoring requirements or chemicals for regulation.

Prioritization approaches should help utilities and others organize and manage screening of TOrcs.
DIAGNOSTIC SCREENING TOOL DEVELOPMENT
Challenges

- TOrCs often co-occur with less subtle stressors (e.g., habitat modification, nutrients)
- Link between EDC effects on individual organisms and population / community level effects not clear
- Mode of action unknown for many TOrCs
Under what types of site conditions do TOrCs pose a risk to aquatic populations and communities?
Do TOرCs measured in effluent pose a risk to aquatic populations and communities?

Predictive/risk assessment
Do we find effects when TOرCs are elevated?
Two General Approaches

- **Screening assessment:**
 - Develop relationships between certain types of sources (e.g., POTW effluent) and biological effects
 - Infer TOrC effect using exposure models

- **Diagnostic risk assessment:**
 - Evaluate high priority TOrCs first
 - Use causal analysis tools (e.g., CADDIS)

- **Both approaches work together.**
Screening Approach

Influent factors:
- population size and age distribution;
- types of inputs (e.g., hospital contribution)

Treatment factors:
- Type of treatment;
- treatment performance;
- effluent consistency;
- frequency of upsets

Site factors:
- barriers to organism movement;
- refugia present;
- sensitive species;
- pH, temp;
- effluent dilution

Site observations:
- fish intersex frequency;
- tissue hormone concentrations;
- TOrC data;
- population/community impairment

TOrCs predicted to pose risk to aquatic life?
DIAGNOSTIC RISK ASSESSMENT
EXPOSURE

Predicted concentration of TOrCs

Measured concentration of TOrCs

Group TOrCs by MOA or class

Calculate toxicity or EDC effect

Priority TOrC exposure

Habitat impairment*
Legacy toxics*
Inorganic toxics*
Invasive species*
Excess Nutrients

Sources
Fate
Treatability

Prospective
Retrospective

Other stressors

* Not readily predicted – usually must be measured at site
EFFECTS

Measured biological condition

Community & Assemblage Indicators

Causal analysis: Determine if TOrCs pose risk

Organism Indicators

Sub-organism Indicators

Priorit TOrC exposure regime

Predict biological risk

SSDs ecosystem models

Population models Ecotox Ecosar

EDC/biomarker thresholds

Detemine if TOrCs pose risk

Prospective Retrospective
Coordination and Collaboration are Key

- California water re-use CEC prioritization
- Int’l Joint Commission of Great Lakes Survey
- Florida micro-constituent evaluations
- USGS-NAWQA 3rd decade CEC prioritization
- Canadian Water Network CEC prioritization
- EPA – POTW surveys; fish tissue surveys
- EU EDC prioritization
Next Steps

- Evaluate example case studies using screening and diagnostic framework
- Develop hypotheses that should be tested in Phase 2
- Build collaborations & partnerships for Phase 2