Distribution of Naturally-Occurring Perchlorate in Groundwater in California and the Southwest US

Miranda Fram and Ken Belitz
USGS California Water Science Center
Groundwater Ambient Monitoring and Assessment (GAMA) Program

U.S. Department of the Interior
U.S. Geological Survey
Acknowledgements

- ~ 1500 well owners and water purveyors allowed USGS to sample their wells
- 30 members of USGS GAMA team in 2004-2009
- Funding from California state bonds, administered by California State Water Resources Control Board
Outline

- Background on perchlorate
- California Groundwater Ambient Monitoring and Assessment (GAMA) Program
- Data analysis and modeling
- Distribution of naturally-occurring perchlorate in California and Southwest US
Perchlorate Basics

- **Chemistry:**
 - Highly soluble anion, ClO_4^-
 - Redox behavior similar to nitrate

- **Health effects:**
 - Impairs iodine uptake and thyroid hormone production
 - Most critical for fetuses, infants, young children - thyroid hormones affect growth and neurological development

- **Regulation:**
 - USEPA interim drinking water health advisory level 15 µg/L
 - California MCL 6 µg/L (Oct 2007)
 - Other states ... 1 to 50 µg/L
Perchlorate Sources

- **Natural**
 - Atmospheric origin
 - Found in Chilean Atacama Desert nitrate deposits, some evaporites, and salts accumulated in unsaturated zones in arid/semi-arid areas

- **Anthropogenic**
 - Aerospace/military/industrial (solid rocket fuel, explosives, safety flares, fireworks, matches, etc)
 - Agricultural (fertilizer derived from Chilean nitrate deposits)
 - Disinfection byproduct (aging of hypochlorite solutions)
What is the natural background distribution of perchlorate in groundwater?

- Differentiate between perchlorate from natural and anthropogenic sources
 - Direct measures – water quality parameters
 - Indirect measures – land use, climate, etc.
- Need large dataset with lots of variability in potential source terms ... California GAMA
GAMA Priority Basin Project 2004 - 2010

- Comprehensive statewide assessment of groundwater quality in aquifers used for public drinking water supply
- Design* based on NAWQA

35 study units
~ 2,500 wells

*Belitz et al., 2003
GAMA Perchlorate 2004-2009

<table>
<thead>
<tr>
<th>Report limit (µg/L)</th>
<th>Statewide detection frequency</th>
<th>Study Unit detection frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>0.1</td>
<td>63</td>
<td>12</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Detections (µg/L)
- 0.1 – 0.5
- 0.5 – 1
- 1 – 4
- > 4

Nondetections (µg/L)
- <0.1
- <0.5
- <1 or higher

Perchlorate
n = 1624
Logistic Regression Model

- Probability of perchlorate detection (above a specified reporting level, RL)
- RLs: 0.1, 0.5, 1, and 4 μg/L
- Independent variables
 - Natural sources
 - Anthropogenic sources

\[
Pr = \frac{e^{(b_0 + b_{AI}AI + b_{AS}AS)}}{1 + e^{(b_0 + b_{AI}AI + b_{AS}AS)}},
\]

- Observed Detection Frequencies
- Deciles of risk test of model fit
- \(R^2 = 0.98\)
Proxy for Natural Source is Aridity Index

\[
AI = \frac{\text{Precipitation}}{\text{Potential ET}}
\]

- \(<0.05\) Hyper-arid
- \(0.05-0.2\) Arid
- \(0.2-0.5\) Semi-arid
- \(0.5-0.65\) Dry subhumid
- \(0.65-1\) Humid
- \(>1\) Wet

*PRISM, 2006
**Flint and Flint, 2007
Anthropogenic Sources Represented by a 4-Component ‘Anthropogenic Score’

- Nitrate-N greater than 3 mg/L
- Pesticides or fumigants present
- Solvents or fuel components present
- Close to known contamination sites
 - 1 site within 10 km or 2 within 25 km
 - Special case of Colorado River water
- Other variables tested
 - Land use (urban, agricultural)
 - Chloroform
Study Unit Results

> 0.1 µg/L

> 0.5 µg/L

Aridity Index

Study Unit
Average AS

- AS=0
- AS=4

Detection Frequency or Predicted Probability

0.2 - 0.7
0.9 – 1.1
1.1 – 1.5
1.6 – 3.2
Probability that Detected Perchlorate is Naturally-Occurring
Probability of Detecting Naturally-Occurring Perchlorate

- > 70%
- 60 – 70
- 50 – 60
- 40 – 50
- 20 – 40
- 10 – 20
- 5 – 10
- 1 – 5
- < 1 %

- > 0.1 µg/L
- > 0.5 µg/L
- > 1 µg/L
Summary

- Logistic regression model yields probability of detecting naturally-occurring perchlorate as a function of climate
 - Model uses direct measures – water quality – to infer presence of potential anthropogenic sources
 - Low concentrations (<0.5 µg/L) widespread
 - Probability decreases rapidly as concentration increases

- Study unit scale anthropogenic sources/processes
 - Relative importance of industrial and agricultural sources
 - Redistribution of natural perchlorate by anthropogenic process – irrigation