Disinfection By-Products: Research Plans of the United States Geological Survey

Michelle Hladik¹, Mike Focazio²

¹USGS Toxics Program, California Water Science Center,
²USGS Office of Water Quality

April 28, 2010
Outline

• DBP background and regulation

• Importance of unregulated DBPs

• Prioritization of compounds for targeted research assessments

• Analytical methods
DBP Formation

• Drinking water is disinfected for waterborne diseases
 – Chlorine is traditional disinfectant
 – Newer technology includes chemical (ozone, chloramination, UV) and physical (ultrafiltration, reverse osmosis, activated carbon) treatment

• Disinfectant can react with other water components
 – Natural organic matter
 – Bromide or iodide
 – Anthropogenic components
DBP Regulation

• Toxicity
 – Chlorinated water linked to cancer

• 11 are currently regulated in the U.S.
 – Trihalomethanes (4)
 – Haloacetic Acids (5)
 – Oxyhalides (2)

• Occurrence
 – National scale data - compliance monitoring
 – Only for MCL purposes – µg/L concentrations
Why DBPs need further study

• Not all **toxicity** can be linked to regulated DBPs
 – Bladder cancer
 – Endpoints other than carcinogenicity

• Other **pathways** of DBPs exposure
 – **Human health** - drinking water, dermal and inhalation exposure
 – **Ecological exposures** - treated released to the environment

• Unknown **fate** and **transport** in the environment

• Determining how **precursors** affect DBP formation

• Changing **disinfection** technology
 – More ozone, chloramination → “emerging” DBPs formed
 – Toxicity of DBPs formed shifts
Other DBP Sources

- Wastewater discharges
- Water re-use
- Irrigation with treated water
- Swimming pools
Disinfectant Changes DBPs

- Bromodichloromethane (Free Chlorination)
- N-nitroso-dimethylamine (NDMA) (Chloramination)
- Bromate (Oxidation)
- Chlorite (Chlorination of Caustic)
Unregulated DBPs

• Over 600 DBPs known to form in disinfected water
 – Few have qualitative occurrence or health-effects studies
 – Over half of total organic halides formed not identified

• EPA is considering monitoring more
 – UCMR2 - nitrosamines
 – CCL3 - formaldehyde

• 74 have been tagged as emerging DBPs
 – Occurrence levels
 – Toxicological properties
Emerging DBPs

- **Category 1- Human carcinogens**
 - 8 DBPs; 4 regulated, 4 unregulated
 - Some or all characteristics of human carcinogens

- **Categories 2 and 3 – Genotoxic or unknown**
 - Moderate occurrence (sub to low µg/L)
 - Category 2: 29 genotoxic compounds; 2 rodent carcinogens
 - Category 3: 14 with little or no toxicological data

- **General rule**
 - I > Br > Cl for genotoxicity
 - Br > Cl (I?) for carcinogenicity
Possible Target DBPs

Halo-methanes and halo-acids
- Iodoform
 - sub to low µg/L

Halonitromethanes
- Trichloronitromethane
 - low µg/L

Halofuranones

Haloamides
- Chloroacetamide

Haloacetonitriles
- Bromoacetonitrile

Category 1
- human carcinogen
 - Chloroacetaldehyde
 - NDMA

Category 2
- genotoxic
 - Aldehydes
 - rodent carcinogen
 - Chloroacetaldehyde

Roentgen carcinogen

USGS
science for a changing world
Emerging DBP Sources - Wastewater

• Not traditionally considered a DBP source

• Limited research (Krasner et al., 2009, ES&T, 43, 8320-8325)
 – Nitrification affects DBP formation
 • Poor nitrification with chlorination lead to less halogenated DBPs but higher NDMA
 • Well-nitrified, more halogenated DBPs but lower NDMA
 – Also detected haloacetonitriles and haloacetaldehydes

• Persistence of wastewater DBPs will impact potential affects
Precursors and DBPs

- Need to understand how compounds present in water affect DBP formation

- Natural organic matter
 - Poorly characterized, varies
 - Links to watershed, soil, landuse

- Transformation products of anthropogenic compounds (pesticides, pharmaceuticals, surfactants)
 - Most current treatment studies only focus on parent removal
 - Products could be more toxic than parent
DBP Precursors - Pesticides

- Products not formed in the environment through hydrolysis, photolysis, biodegradation, etc.

- Not included in typical treatment studies - parent disappearance, some environmental degradates

DBP Prioritization Considerations

- Toxicity (human, ecological)
- Chemical properties (stability, hydrophobicity)
- Disinfection type (chlorination, ozonation)
- Sources/precursors (organic matter, ions)
- Documented occurrence (when available)
- Available methods (instrumentation, detection levels)
- Seek input from other stakeholders (US EPA and AWWA)
DBP Research Map

- **DBPs (emerging and traditional)**

 - Is the DBP expected to persist in the environment?
 - Yes
 - No
 - Requirements change with matrix (drinking water vs. wastewater)

 - Toxic to humans or aquatic life?
 - Yes
 - No
 - Already Monitored by USGS?
 - Yes
 - Low Priority For Toxics
 - No
 - Target compound for method development
 - Include in focused research studies
 - If it occurs, include in larger ambient monitoring studies (NAWQA)
Analytical Methods

• Modify developed DBP methods
 – GC-ECD; GC-MS; with and without derivatization
 – Expand matrices
 • Wastewater more complex than drinking water
 • Possible interferences or poor recoveries

• Develop new methods
 – LC/MS/MS
 • Alternative to derivatization
 • Good for polar compounds
 • Attempt direct aqueous injection (1 mL)

• Look for knowns and unknowns
Future Plans

• Prioritize DBPs
• Method development
• Reconnaissance – test methods
• Occurrence studies
• Long term
 – Asses DBP behavior in the environment, ecological health studies
 – Identify precursors and sources
• Transfer suitable methods and approaches to monitoring programs