

Century-scale Trends in Peak Streamflow in the United States

Karen Ryberg

Based on ongoing work of Bob Hirsch, Karen Ryberg, and Gregg Wiche

National Monitoring Conference April 2010

Gages Selected For Study

- Approximately 7,500 active gages to choose from
- Chose long-term gages
 - Period of Record 85-127 years
- Eliminated highly urbanized and regulated sites
- Other criteria
- Left with 200 sites

Streamflow Trends

Water Year Coefficient for Trend in Peak Streamflow

Small increase over time

Large increase over time

USGS Small decrease over time

Large decrease over time

Patterns

Water Year Coefficient for Trend in Peak Streamflow

Long-term Monitoring Issues

- States with no long-term, unregulated sites create large gaps in map
- Clustered/correlated sites, for example, Red River of the North Basin
- Period of record makes a difference in the trend reported

What could explain the curved line?

- CO₂ carbon dioxide in the atmosphere
- El Niño/La Niña
- PDO Pacific Decadal Oscillation
- AMO Atlantic Multidecadal Oscillation
- Atmospheric Temperature

Streamflow Trends

CO2 Coefficient for Trend in Peak Streamflow

Small increase over time

Large increase over time

USGS Small decrease over time **v**

Large decrease over time

Pacific Decadal Oscillation

From Joint Institute for the Study of the Atmosphere and Ocean at the University of Washington

Typical wintertime sea surface temperature (colors), sea level pressure (contours) and surface windstress (arrows) anomaly patterns during warm and cool phases of PDO

Correlation of Annual Peak Streamflow and Pacific Decadal Oscillation

Small positive correlation •

Small negative correlation

≊USGS

Large positive correlation

Large negative correlation

What If We Go Further Back In Time

- CO₂ Was Lower
- How Do We Explain Large Floods?
- Red River of the North at Winnipeg

Data Courtesy Manitoba Water Stewardship and Geological Survey of Canada Publication by Bill Rannie

Data Courtesy Manitoba Water Stewardship and Geological Survey of Canada Publication by Bill Rannie

Summary

Streamflow is naturally highly variable

Probably need 200+ years of record to get a better picture

Long-term, geographically dispersed monitoring is needed to understand streamflow response to a diversity of climatic conditions

