Temporal and Spatial Variability of Mercury, pH, and Non-Sea Salt Sulfate Fluxes associated with anthropogenic emissions in the Pensacola Bay Region

Alexander Maestre - Jane Caffrey
Center for Environmental Diagnostics and Bioremediation
University of West Florida

William Landing – Nishanth Krishnamurthy
Department of Earth, Ocean, and Atmospheric Science
Florida State University
History

• Project started in November 2004 with collectors at Ellyson, Pace, and Molino.
• Monitoring of atmospheric wet deposition of Hg. Initially funded by EPA. Since January 2008 by the Electric Power Research Institute
• National Atmospheric Deposition Program: NADP - MDN
• Power plant installed scrubber and other controls.
• Beach station became active in September 2009
Source: USGS Map Seamless Server, http://www.usmarshals.gov, and Microsoft Bing
Total Pounds Released 2010 = 946,181 (-90%)

Source: EPA Toxic Release Inventory (TRI) explorer
Equipment

Rain Gauge
Temperature and pressure sensor
Data logger
Backup Battery
Sampling and Analysis

- Samples collected after each storm event greater than 0.1 inches
- University of West Florida analyzed samples for pH, Sulfate, Nitrate+nitrite, Chloride, Phosphate, Sodium, Ammonia, Potassium, Magnesium, and Calcium
- Florida State University analyzed Mercury and Trace Metals.
Data Collected

<table>
<thead>
<tr>
<th></th>
<th>Since Beginning of the Project (November 2004)</th>
<th>Using Four Collectors (September 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PE Bottles</td>
<td>1,155</td>
<td>397</td>
</tr>
<tr>
<td>Total Teflon Bottles</td>
<td>2,062</td>
<td>730</td>
</tr>
<tr>
<td>Total Bottles</td>
<td>3,217</td>
<td>1,127</td>
</tr>
<tr>
<td>Storms Collected</td>
<td>386</td>
<td>101</td>
</tr>
<tr>
<td>Records with Climatological Information (Airport and Dataloggers)</td>
<td>61,344</td>
<td>18,263</td>
</tr>
</tbody>
</table>
Climate Findings

• Major storms
• Summer Storms vs Winter Storms
• Wind Direction
• Wind Speed
High Intensity Storms
P = 0.090
n = 258
n = 54

P = 0.844
n = 225
n = 51

P = 0.060
n = 225
n = 58

P = 0.721
n = 62
n = 15
P = 0.007
n = 264
n = 58

P = 0.018
n = 228
n = 53

P = 0.081
n = 233
n = 57

P = 0.143
n = 57
n = 15
Monthly Analysis

Boxplot of pH

Panel variable: Site
Since September 2009

Scatterplot of pH vs Hg

Panel variable: Site
Since September 2009

Scatterplot of pH vs Hg

Panel variable: Site
Since September 2009
Since September 2009

Scatterplot of pH vs Sulfate

Panel variable: Site
Scatterplot of pH vs Wind_Direction

Panel variable: Site
Scatterplot of Sulfate vs Wind_Speed

Panel variable: Site
Aviation Routing Weather Report

Probability Plot of pH
Lognormal

- pH
- Percent
- Weather
- "-RA BR"
- "-RA"
- "-TSRA BR"
- "-TSRA H2"
- "-TSRA FG"
- "+RA BR"
- "BR"
- "RA BR"
- "RA"
- "TS BR"
- "TS+RA BR"
- "TS+RA FG"
- "TSRA BR"
- "VCTS -RA"
Aviation Routing Weather Report

Probability Plot of Hg
Lognormal

- Percent
- Hg ppt

Weather
- "-RA BR"
- "-RA"
- "-TSRA BR"
- "-TSRA Hz"
- "-TSRA BR"
- "+RA BR"
- "BR"
- "RA BR"
- "RA"
- "TS BR"
- "TS+RA BR"
- "TS+RA FG"
- "TSRA BR"
- "VCTS -RA"
Conclusions

• There is an apparent relation between pH and total mercury concentration on the three sites located close to the power plant and other major plants in Pensacola.

• Rain events with high intensity at the beginning of the storm, appeared to have higher pH than storms with low intensity.

• Samples collected during the summer had significant lower pH values and higher total mercury concentrations compared with samples collected during the winter.
Thank you

Center for Environmental Diagnostics and Bioremediation (CEDB)
University of West Florida
Pensacola, FL.

Department of Earth, Ocean, and Atmospheric Science
Florida State University
Tallahassee, FL.