Occurrence and transformation of benzodiazepine pharmaceuticals in the environment

Tina Kosjek, Silva Perko and Ester Heath

Jožef Stefan Institute, Slovenia
Benzodiazepines
tranquilizers, anxiolytics, anticonvulsants

- treatment of anxiety, sleep disorders, convulsive states; centrally acting muscle relaxants, premedication and as inducing agents in anaesthesiology

- bind to the GABA-A receptor → allosteric modification of the receptor → increase the frequency of channel opening events → increase in chloride ion conductance & inhibition of the action potential
Rising consumption of psychiatric drugs

Increasing awareness of mental health issues

Stresses of modern living \rightarrow more psychiatric disorders

Demographic changes

Developing health care system

Rising consumption of psychiatric drugs

Abuse potential

Burden placed on the environment

Cycling?
Fate?
Effects?
Chemical analysis

- Confirmatory
- Quantification
- Identification of transformation products

SPE
- RP SPE: wide polarity range polymeric sorbent @ neutral pH

Derivatization
- Acetylation: Ac₂O/Pyr (3/1); 80°C, 15hrs (DZ underivatized)

Chromatographic separation
- GC: 5% phenyl column
- LC: RP C-18

Analysis
- MS/(MS): EI
- MS/MS: ESI(+), HRMS
Occurrence
(surface waters, wastewaters)

- Diazepam (DZ)
- Bromazepam (BZ)
- Oxazepam (OXA)

Town A
(22 000 inhabitants)

Town B
(360 000 inhabitants)

Town C
(18 000 inhabitants)

• sampling approach: time proportional (24hrs) or grab
• sampling campaigns: winter and spring 2011
Occurrence (cont’d)
(surface waters, wastewaters)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>WWTP influent</th>
<th>WWTP effluent</th>
<th>River water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c_{\text{range}})</td>
<td>(c_{\text{med}})</td>
<td>%positive</td>
</tr>
<tr>
<td>DZ</td>
<td>17-111</td>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>BZ</td>
<td>40-158</td>
<td>99</td>
<td>25</td>
</tr>
<tr>
<td>OXA</td>
<td>41-72</td>
<td>56</td>
<td>67</td>
</tr>
</tbody>
</table>

- Legend: \(c_{\text{range}}\): concentration range, \(c_{\text{med}}\): median concentration, % positive: percentage of > LOD samples
Occurrence (detailed)

<table>
<thead>
<tr>
<th>Town</th>
<th>Sampling point</th>
<th>Sampling date</th>
<th>Sampling approach</th>
<th>c(OXA) ng/L</th>
<th>c(BZ) ng/L</th>
<th>c(DZ) ng/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town A</td>
<td>River before municipality</td>
<td>1-A</td>
<td>Winter 2011</td>
<td><LOD</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td></td>
<td>River after municipality and pharmaceutical industry</td>
<td>2-A</td>
<td>Winter 2011</td>
<td><LOD</td>
<td><LOD</td>
<td><LOD</td>
</tr>
<tr>
<td>Town B</td>
<td>Hospital effluent 1</td>
<td>1-B</td>
<td>Winter 2011</td>
<td><LOD</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-B</td>
<td>Spring 2011</td>
<td>72</td>
<td><LOD</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Hospital effluent 2</td>
<td>2-B</td>
<td>Winter 2011</td>
<td><LOD</td>
<td>158</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-B</td>
<td>Spring 2011</td>
<td>41</td>
<td><LOD</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>WWTP influent</td>
<td>3-B</td>
<td>Winter 2011</td>
<td>58</td>
<td><LOD</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-B</td>
<td>Spring 2011</td>
<td>54</td>
<td><LOD</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>WWTP effluent</td>
<td>4-B</td>
<td>Winter 2011</td>
<td>28</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-B</td>
<td>Spring 2011</td>
<td>46</td>
<td><LOD</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Stream before effluent</td>
<td>5-B</td>
<td>Winter 2011</td>
<td>11</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-B</td>
<td>Spring 2011</td>
<td>21</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Stream after effluent</td>
<td>6-B</td>
<td>Winter 2011</td>
<td>30</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-B</td>
<td>Spring 2011</td>
<td>31</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Town C</td>
<td>River before WWTP discharge</td>
<td>1-C</td>
<td>Spring 2011</td>
<td><LOD</td>
<td><LOD</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>River after WWTP discharge</td>
<td>2-C</td>
<td>Spring 2011</td>
<td><LOD</td>
<td><LOD</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-C</td>
<td>Winter 2011</td>
<td><LOD</td>
<td><LOD</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>WWTP effluent</td>
<td>3-C</td>
<td>Spring 2011</td>
<td>84</td>
<td><LOD</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-C</td>
<td>Winter 2011</td>
<td>133</td>
<td><LOD</td>
<td>22</td>
</tr>
</tbody>
</table>
Fate

Microbiological
- oxic/anoxic flow-through reactors, suspended biomass

Abiotic
- photolytic / photochemical (UV+H$_2$O$_2$) degradation
- sorption to activated carbon
Sequential treatment of DZ

99.9% removal may not be sufficient!

- **OX**
- **ANOX**
- **OX+ANOX**
- **OX+ANOX+OX+ANOX**
- **OX+ANOX+OX+ANOX+UV/H2O2**
- **OX+ANOX+OX+ANOX+AC**
- **OX+ANOX+OX+ANOX+UV/H2O2+AC**

Literature data: low removal of DZ
Sequential treatment of DZ

INFLUENT
- $c(DZ) = 94\mu g/L$
- $c(OXA) = 2.2\mu g/L$

EFFLUENT
- $c(DZ) = 18\mu g/L$
- $c(OXA) = 2.2\mu g/L$

UV/H_2O_2
- $c(DZ) = 170$ ng/L
- $c(OXA) = 166$ ng/L

AC
- $c(DZ) = 16$ ng/L
- $c(OXA) = 10$ ng/L

99.9% removal may not be sufficient!

Literature data: low removal of DZ

Not applicable to "real world"
THE ABATEMENT OF A PARENT PHARMACEUTICAL DOES NOT PROVIDE THE INDICATION OF TREATMENT EFFICIENCY ➔ TRANSFORMATION PRODUCTS (persistence, toxicity?)
Transformation of DZ

A. Mimicking human metabolism:

- **DZ** → **N-desmethyldiazepam** / **nordiazepam** → **temazepam** → **temazepam** → **OXA**
Transformation of DZ (cont’d)

B. Different than human metabolism

→ novel, previously unrecognized compounds:
Transformation of OXA

B. Different than human metabolism

→ novel, previously unrecognized compounds:

\[
\text{photochemical treatment}
\]

\[
\text{biotransformation}
\]
Identification: MS/MS and HRMS

DZ
[M+H]^+=285.0795

Nordiazepam
[M+H]^+=271.0638

OXA
[M+H]^+=287.0587
The purpose of identification is not the identification itself, but...

- To evaluate the effect of water treatment ... Do we produce transformation products with increased toxicity? → the identified transformation products should be tested on geno-, eco-, cyto- ... toxicity
- To upgrade the treatment in order to achieve mineralisation instead of (slight to moderate) structural transformation of mother compounds
- To contribute to a comprehensive risk assessment
- To raise the scientific and public awareness that persistent TPs are, as well as their parent compounds, environmentally relevant emerging pollutants.
Acknowldegements

• Slovenian Research Agency, Postdoctoral project Z1-3677: “Psychoactive pharmaceuticals and their transformation products in water treatment processes”
• Slovenian Research Agency, Research program P1-0143: »Cycling of nutrients and contaminants in the environment, mass balances and modeling of environmental processes and risk analysis«

For more information see:

<table>
<thead>
<tr>
<th>Compound / abbreviation</th>
<th>LC – t_R (min)</th>
<th>Accurate mass (calculated) [M+H]$^+$</th>
<th>Elemental composition [M+H]$^+$</th>
<th>Mass error</th>
<th>MS/MS</th>
<th>Treatment conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZ</td>
<td>2.97</td>
<td>285.0795</td>
<td>C${16}$H${14}$N$_2$OCl</td>
<td>−0.5 ppm</td>
<td>285/287, 257/259, 228/230, 222, 193, 154/156</td>
<td>parent compound</td>
</tr>
<tr>
<td>OXA</td>
<td>2.40</td>
<td>287.0587</td>
<td>C${15}$H${12}$N$_2$O$_2$Cl</td>
<td>−0.3 ppm</td>
<td>287/289, 269/271, 257/259, 241/243, 205, 163/165, 151</td>
<td>1. from DZ by biotransformation; 2. used as a parent compound</td>
</tr>
<tr>
<td>temazepam</td>
<td>2.72</td>
<td>301.0744</td>
<td>C${16}$H${14}$N$_2$OCl</td>
<td>−1.3 ppm</td>
<td>301/303, 283/285, 271/273, 255/257</td>
<td>photocatalysis, biotransformation</td>
</tr>
<tr>
<td>nordazepam</td>
<td>2.51</td>
<td>271.0638</td>
<td>C${15}$H${12}$N$_2$OCl</td>
<td>0.0 ppm</td>
<td>271/273, 243/245, 208, 165/167, 140/142</td>
<td>photocatalysis, biotransformation</td>
</tr>
<tr>
<td>TP-C-301: 3 isomers, hydroxylated DZ (ring »C«)</td>
<td>1.66 2.29 3.39</td>
<td>301.0744</td>
<td>C${16}$H${14}$N$_2$OCl</td>
<td>0.0 ppm</td>
<td>301/303, 273/275, 238, 209, 182, 154/156</td>
<td>photocatalysis</td>
</tr>
<tr>
<td>TP-A-301: 2 isomers, hydroxylated DZ (ring »A«)</td>
<td>1.75 2.59</td>
<td>301.0744</td>
<td>C${16}$H${14}$N$_2$OCl</td>
<td>2.0 ppm</td>
<td>301/303, 273/275, 238, 209, 198, 170/172, 105</td>
<td>photocatalysis</td>
</tr>
<tr>
<td>TP-C-317: 2 hydroxylated DZ</td>
<td>2.28</td>
<td>317.0693</td>
<td>C${16}$H${14}$N$_2$O$_3$Cl</td>
<td>0.9 ppm</td>
<td>317/319, 289/291, 260/262, 254, 225, 179/181, 182/184, 154/156, 123</td>
<td>photocatalysis</td>
</tr>
<tr>
<td>TP-A/C-317: 2 hydroxylated DZ</td>
<td>1.67</td>
<td>317.0693</td>
<td>C${16}$H${14}$N$_2$O$_3$Cl</td>
<td>−0.9 ppm</td>
<td>317/319, 289/291, 260/262, 199, 182/184, 105</td>
<td>photocatalysis</td>
</tr>
<tr>
<td>TP-303</td>
<td>1.80</td>
<td>303.0900</td>
<td>C${16}$H${14}$N$_2$O$_3$Cl</td>
<td>−1.0 ppm</td>
<td>303/305, 246/248, 228/230, 193</td>
<td>biotransformation</td>
</tr>
<tr>
<td>TP-271</td>
<td>2.89</td>
<td>271.0638</td>
<td>C${15}$H${12}$N$_2$OCl</td>
<td>−1.8 ppm</td>
<td>271/273, 253/255, 218, 190</td>
<td>biotransformation</td>
</tr>
<tr>
<td>TP-A/C-303: 3 isomers, hydroxylated OXA (ring »A« or »C«)</td>
<td>1.75 1.99 2.63</td>
<td>303.0536</td>
<td>C${15}$H${12}$N$_2$O$_3$Cl</td>
<td>0.0 ppm, 0.7 ppm, 0.3 ppm</td>
<td>303/305, 285/287, 257/259</td>
<td>photocatalysis at pH2</td>
</tr>
</tbody>
</table>