Spatial and Temporal Dynamics of Microcystins and their Relation to Other Water Quality Variables in Upper Klamath Lake, Oregon

Sara Eldridge, Tamara Wood, Blake Eldridge, Liam Schenk, and Kathy Echols
Background: Upper Klamath Lake (UKL)

- Large (232 km²), shallow (2.8 m, average)
- Hypereutrophic
- Seasonal blooms of *Aphanizomenon flos-aquae* (AFA; > 90 %)
- Endangered Lost River and shortnose suckers

http://or.water.usgs.gov/klamath/
Background: Microcystins in UKL

- Toxigenic M. aeruginosa detected in A. flos-aquae dietary supplements by Gilroy et al., 2000; Saker et al. 2007.
- Pathological effects on juvenile suckers investigated by USGS, 2007-present, as seen by VanderKooi et al., 2010.
- Microscopic gut analysis, 2008, showing M. aeruginosa ingested during benthic feeding by B. Rosen, USGS, unpublished data.
Sample Collection 2007-2011

- All years: Water column
- 2009: Sediment cores and sediment traps
- 2010: Chironomid larvae
- 2011: qPCR (MDN, MDT)

<table>
<thead>
<tr>
<th>Year</th>
<th>MDN</th>
<th>WMR</th>
<th>EPT</th>
<th>MDT</th>
<th>MDL</th>
<th>RPT</th>
<th>HDB</th>
<th>NBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>2011</td>
<td></td>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td>2011</td>
<td></td>
</tr>
</tbody>
</table>
Dissolved, 2008-2011

Large Particulate Fraction, 2007-2011
Sediment Surface, Traps 2009

![Graphs showing Microcystins concentrations over time]
Spatial Variation 2009, 2011

Based on 2-year median values

EXPLANATION

Dissolved microcystins
- Low
- Moderate
- High

Large particulate microcystins
- Low
- Moderate
- High
- **Cyanobacteria, 16S rRNA**
- **M. aeruginosa, 16S rRNA**
- **Microcystin production, mcyE**
Total Microcystins vs. Chlorophyll a, Total and Dissolved Nutrients, 2009
A. flos-aquae vs. M. aeruginosa

- Microcystin occurrence and toxigenic M. aeruginosa associated with the second A. flos-aquae-dominated bloom
- N\textsubscript{2} fixation in A. flos-aquae, not M. aeruginosa
- Hypothesis: Toxigenic M. aeruginosa growth stimulated by DIN during A. flos-aquae-dominated bloom decline, but dependent on DIP to regulate A. flos-aquae growth and decline
- Impact of nutrient reduction (management) on microcystin occurrence
Summary

- High inter-annual variability; large particulate microcystin concentrations highest in 2007 and 2009
- Concentrations highest at MDT (trench)
- Toxin concentrations increase after recovery of first lakewide bloom, with increasing chlorophyll a, TN and TP
- Relation between *A. flos-aquae* and *M. aeruginosa* based on nutrient dynamics
 - *M. aeruginosa* dependent on *A. flos-aquae* to supply DIN directly, DIP indirectly through bloom cycle