DEVELOPMENT OF A REFERENCE LAKE SCREENING TOOL FOR THE PRAIRIE POTHOLE LAKES BASED ON 2007 NLA LAND USE AND WATER QUALITY DATA

Joseph Hoffmann - Environmental Sciences, Minnesota State University Mankato
Mike Ell - North Dakota Department of Health Division of Water Quality
Steve Heiskary - Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency
Dr. Beth Proctor - Environmental Sciences, Minnesota State University-Mankato
Importance of the Prairie Pothole Region (PPR)

- Ecologically and Economically important
 - 50 to 80% of North American Duck production (van der Valk and Pederson 2003)
 - Benefit surface–groundwater retention (Batt et al, 1989)
 - Waterfowl hunting produces Est. $2.3 Billion in total industry output (USFWS Report 2006–2)
WHAT ARE REFERENCE LAKES

- EPA – A lake (either natural or artificial) with attributes that come as close as practical to those expected in a natural state, i.e., least-disturbed lake environment. (NLA 2007)

- Least-disturbed condition can be defined as the best available chemical, physical, and biological habitat conditions given the current state of the landscape – or “the best of what’s left” (Stoddard et al. 2006).
Need for establishment of reference lakes in the Prairie Pothole region

Unique Lake Characteristics

- Shallow Lakes (max depth of 4.5m)
- Non-Stratified, well mixing lakes
- Limited coverage of submerged aquatic vegetation
- Estimated 7900+ Prairie Pothole Lakes
92 Prairie Pothole Lakes – 2007 NLA

Lakes in the Prairie Pothole Region surveyed in the 2007 National Lake Assessment

- PPL Lakes
OBJECTIVE

To identify Potential Reference Lakes in the Prairie Pothole Region (PPR) based on Land Use in the Watershed.

Source: Prairie Pothole Joint Venture (http://www.ppjv.org)
2006 National Land Cover Database
PPR Screening Process

Step 1 • Stage 1 – Watershed disturbance screen

Step 2 • Stage 2 – Aerial photograph screen

Step 3 • Stage 3 – Potential Reference Lake Evaluation
Stage 1 – Watershed disturbance screen

1. < 15% *Row Crop* land use in the watershed

2. < 15% *Developed* land use in the watershed

3. < 5% *Developed* land use in the 200 m buffer area

4. < 5% *Row Crop* land use in the 200 m buffer area

*Percentages calculated with EPA Software ATtILAA
Developed (NLCD21 + NLCD22 + NLCD23 + NLCD24)
Row crops (NLCD82)*
Stage 2 – Aerial photograph screen

Ranking values applied to aerial photograph

- **No visual evidence of disturbance** → 0
- **Disturbance feature occurs, but appears to impact only a small percentage of the lakeshore area (< 10%)** → 1
- **Disturbance feature appears to impact 10 to 25% of lakeshore** → 2
- **Disturbance feature appears to impact more than 25% of lakeshore** → 3

Source: Herlihy et al, In review
Turtlefoot Lake, SD.

NLA06608-2007
Disturbance Score 1
Potential Reference Lake (PRL) Evaluation

<table>
<thead>
<tr>
<th>Matrix</th>
<th>p value <0.05 sign diff</th>
<th>PRL Mean</th>
<th>n=13</th>
<th>Assessment Pop. Mean</th>
<th>n=79</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTL (μgP/L)</td>
<td>0.03</td>
<td>184</td>
<td></td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>CHL-A (μg/L)</td>
<td>0.0001</td>
<td>17</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Turb (NTU)</td>
<td>0.03</td>
<td>16</td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>TSI-TP (Carlson’s TSI TP)</td>
<td>0.03</td>
<td>70</td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>DOC (mg/L)</td>
<td>0.04</td>
<td>36</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>ANC (μeq/L)</td>
<td>0.02</td>
<td>11047</td>
<td></td>
<td>6324</td>
<td></td>
</tr>
<tr>
<td>CA_ppm (mg/L)</td>
<td>0.003</td>
<td>32</td>
<td></td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>p-Hab_Sub **</td>
<td>0.04</td>
<td>1.44</td>
<td></td>
<td>1.76</td>
<td></td>
</tr>
</tbody>
</table>

** Number of substrate classes

t-Test at 95th confidence level
21 matrices evaluated
PRL compared to Most Disturbed Lakes

<table>
<thead>
<tr>
<th>Matrix</th>
<th>p value <0.05 sign diff</th>
<th>PRL Mean</th>
<th>n=13</th>
<th>Most Disturbed Mean</th>
<th>n=11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHL-A (μg/L)</td>
<td>0.01</td>
<td>17</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>TSI-TP (Carlson’s TSI TP)</td>
<td>0.03</td>
<td>70</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>TOC (mg/L)</td>
<td>0.03</td>
<td>39</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>ANC (μeq/L)</td>
<td>0.002</td>
<td>11047</td>
<td></td>
<td>4304</td>
<td></td>
</tr>
<tr>
<td>DOC (mg/L)</td>
<td>0.02</td>
<td>36</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>NA_ppm (mg/L)</td>
<td>0.05</td>
<td>404</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>K_ppm (mg/L)</td>
<td>0.05</td>
<td>51</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Ca_ppm (mg/L)</td>
<td>0.01</td>
<td>32</td>
<td></td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

Most disturbed lakes identified by 75th percentile of developed and row crop land use.
Box Charts for Potential Reference Lakes

Plotted values include minimum, 25th percentile, median, 75th percentile and maximum of PRL.

Blue line indicates the Regional Biological Reference Thresholds for Region E from the 2007 NLA
Box Chart continue

Blue line indicates the Regional Biological Reference Thresholds for Region E from the 2007 NLA
EPA Regional Biological Reference Lakes.

Regional Cluster E
Regional Cluster C

EPA Regional Biological Reference Lakes.

(NLA Technical Index 2010)
Summary

- PPR lakes have unique characteristics and require own set of reference lakes
- Needs more research and development.
- Advantages of using land use as a screening tool
 - Done with limited resources
 - Adaptability
 - Strengths with increase GIS technology
 - Avoid circular nature when developing nutrient thresholds
 - 2012 NLA + re-sampling Potential Reference Lakes
We would like to thank Richard Mitchell, USEPA Office of Wetlands, Oceans, and Watersheds and Alan Herlihy, Oregon State University, Corvallis, Oregon for their insights and data sharing on reference lake development. Philipp Nagel, Department of Geography, Minnesota State University, Mankato for his technical assists with ArcView 10 software. The North Dakota Department of Health, Division of Water Quality and the Minnesota Pollution Control Agency for providing data and resources for this study. And Minnesota State University, Mankato Graduate School for making available and supplying travel funds for this conference.
Questions?

Source: United States Global Change Research Program.
http://www.usgcrp.gov/usgrcp/library
References

