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Intro

@ Real-time monitoring: big data
@ Lots of new instruments are going in
» That hardware needs to be maintained

@ Each instrument is producing more data

W. Brooks (USGS / UW) Surprise theory May 2012 3 /26



Intro

@ Real-time monitoring: big data
@ Lots of new instruments are going in
» That hardware needs to be maintained

@ Each instrument is producing more data

> Let's use that data to tell us when there's been a change that needs
attention
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Presenting Bayesian Surprise

Automated

Data-driven
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@ Using lightweight computations
@ Detects unusual data

°

Does it all in real-time
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Presenting Bayesian Surprise

Automated

Data-driven

Using lightweight computations
Detects unusual data

Does it all in real-time

Basic idea: learn the distribution of historical data and compare it to
the newest incoming data.
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Surprise theory

@ Original idea of “Bayesian surprise” (2004):
» Laurent Itti - University of Southern California Neuroscientist
» Pierre Baldi - University of California-Irvine Computer Scientist

@ Used to mimic human response to video images:
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Surprise theory

@ Adaptation to sensors:
» Owen Langman’'s M.S. thesis - UW Limnology, 2009

@ Uses identical surprise model (Gamma-Poisson) as Itti and Baldi
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Surprise theory

@ Problems with original theory:

» Ad-hoc “memory” parameter must be tuned manually
» Cannot track mean and variance simultaneously
» Surprise machines were individually tuned to detect specific errors

* Proof of concept
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Bayesian statistics

Bayesian statistics views a probability distribution as representing our
degree of belief. This idea can be applied both to our data and to the
underlying data-generating model.

@ Examples of the three distributions used in this work:
» X ~ Normal(p =0,7=1)
» Y ~ Gamma(a =2, =1)
» Z~t,—q(p=0,02=1)

Normal density; m=0, p=1 Gamma density; a=2, b=1 t density; 4 degrees of freedom
<
S )
)
S}
«©
) S
s wn
&
S}
«
Ko o I
-4 =4 a
wn
bl
o
~
- :
S o
wn
=]
o o °©
ST T T T T T ! © T T T T ) ) T T T T T 1
-3 -2 -1 0 1 2 3 0 2 4 6 8 10 -3 -2 -1 0 1 2 3
X Y 4

W. Brooks (USGS / UW) Surprise theory May 2012 11 /26



Hierarchical models

@ A hierarchical model has more than one random element

@ Randomness at one level feeds into the next
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Hierarchical models

@ A hierarchical model has more than one random element

@ Randomness at one level feeds into the next

Y |~ Normal(m,/p)
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m ~ Normal(u, p)




Hierarchical models

/\ Integrate out the model’s

unobserved layers:

mji-p ~Nomal(u, p) [YImp.wepl x [miwp] x [ple.p)dm dp
/\ plecp ~ Gamma(a, B) —//
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Hierarchical models

[YImp,wcp] x [mup] x [pleepldmdp = [Y]u,op]

Result is the predictive
distribution for new data:

YwoB ~ tu,o,p)

Use the data to estimate
new values of u, a,

W. Brooks (USGS / UW) Surprise theory

Compare the estimated
distribiution to the
predictive distribution
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Calculate the surprise

Difference in log-likelihood
(log[predicted] - log[estimated])

0

Prior predictive
distribution

Integrate theresult\ f

= Kullbach-Leibler divergence
or ‘Surprise’
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lterate the process

Use moving windows to iterate the process as new data comes in:
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Simulated surprise
Surprise generated by a sudden change in mean:
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Simulated surprise
Surprise generated by a sudden change in variance:
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Field data
Pheasant Branch (Middleton, WI) water temp (Dec 2011 - Jan 2012):
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Field data

Trout Lake LTER site (northern WI) CDOM (Nov. 2009):
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Future directions

Add dependence on other variables:
@ Regression on other variables
@ Autoregression

@ Spatial dependence

Y \~ Normal(m,/p)

m ~ Normal(u, p)

e

Other variable(s)

p ~ Gamma(a, B)
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Conclusion

@ Surprise is a data-driven tool that can help to quickly detect problems
with real-time sensors and therefore improve the up-time of a
monitoring network.
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