Evaluation of Nutrient Concentrations, Sources and Pathways in Three Urban Streams in Durham County, North Carolina - Some very preliminary results

Kristen McSwain and Mary Giorgino, USGS NC WSC
Megan Young, USGS Menlo Park
Michelle Woolfolk, City of Durham Stormwater Services

May 3, 2012
NWQMC

U.S. Department of the Interior
U.S. Geological Survey
303(d) Listed Reservoirs
Study Background

- NC EMC adopted comprehensive nutrient management strategies for Falls and Jordan reservoirs
 - Reduce nitrogen and phosphorus loads from urban, stormwater, wastewater, and agriculture sources
- Durham Stormwater Services is tasked with implementing best management practices (BMPs)
- BMPs are required for new development and existing development
- Implementing effective BMPs is complex in urban watersheds because of diverse sources
Research Objectives

- Evaluate nutrient sources in selected tributaries in the vicinity of Durham that feed nutrient-impaired Falls Lake and Jordan Lake
- Document and compare concentrations of nitrogen and phosphorus among 3 urban streams in the Falls Lake and Jordan Lake watersheds
- Evaluate the utility of stable isotopes for characterizing nitrogen sources and transport pathways in urban, low-order streams
Site 1 – Cabin Branch Creek
Cabin Branch Creek

- Falls Lake watershed
- DA = 3.45 mi²
- Least developed watershed
- No public sewer
- Assumption that greatest nitrate source is failing septic tanks
Site 2 – Ellerbe Creek
Ellerbe Creek

- Falls Lake watershed
- DA = 6.01 mi2
- Urban industrial
- Highest percentage of impervious surface
- Assumption that greatest nitrate source is runoff
Site 3 – Third Fork Creek
Third Fork Creek

- Jordan Lake watershed
- DA = 14.79 mi2
- Urban residential
- Assumption that nitrate is mixed from multiple sources
Sampling Plan

- One year study began in July 2011
- Nutrient, stable isotopes of water, and stable isotopes of nitrogen samples collected monthly
- Sample results thus far for 7 events
 - 2 stormflow – falling limb
 - 5 baseflow
- Hope for a combination baseflow (75%) and stormflow (25%) samples
Preliminary results show...

- **Good news for City of Durham!**
 - Nitrate and phosphorus concentrations are <0.4 mg/L

- **Bad news for USGS**
 - No nitrate makes source tracking with N isotopes difficult
$\delta^{18}O$-H$_2$O vs Discharge
Typical Source Ranges
Typical Source Ranges

- Cabin Branch Cr
- Elerbe Cr
- Third Fork Cr
Typical Source Ranges

July – low baseflow
Typical Source Ranges

August – Post Irene but very low flow
Typical Source Ranges

Sept – Falling limb
What have we learned so far?

- In terms of nutrients, healthy urban creeks
- Stable isotopes of water are plotting above the GMWL and LMWL
- Nitrogen stable isotopes suggest atmospheric deposition is an overlooked component
- Cabin Branch Creek does not display adverse effects due to leaking septic tanks
Questions?

Kristen Bukowski McSwain
North Carolina Water Science Center
(919) 571 – 4022
kmcswan@usgs.gov