Estuary Partnership's Restoration Effectiveness Monitoring
National Water Quality Monitoring Conference
April 30-May 4

Jina Sagar, Research Scientist, Lower Columbia Estuary Partnership
Researchers and Funders

Contributing Researchers
• April Silva and Jason Smith, Columbia River Estuary Study Task Force
• Janelle St. Pierre, Scappoose Bay Watershed Council
• Chris Collins and Steve Pilson, Estuary Partnership
• Amy Borde, Pacific Northwest National Laboratories, Marine Sciences Laboratory
• Lyndal Johnson, Sean Sol, Paul Olson, Kate Macneale National Oceanic and Atmospheric Administration, Northwest Science Center

Funding
• Bonneville Power Administration
Salmon in the Columbia River Basin

13 different evolutionarily significant units (ESUs) of anadromous salmonids that reproduce in the Columbia River basin listed as threatened and endangered under the Endangered Species Act

- steelhead (*Oncorhynchus mykiss*)
- chum salmon (*O. keta*)
- Chinook salmon (*O. tshawytscha*)
- lower Columbia River coho salmon (*O. kisutch*)
- Sockeye salmon (*O. nerka*)
Function of Estuaries for Juvenile Salmon

- Estuaries offer 4 opportunities to juvenile salmon in their transition from freshwater to saltwater environments:
 1) Productive feeding area capable of sustaining increased growth rates
 2) Migratory corridor
 3) Temporary refuge from marine predators
 4) Physiological transition zone where fish can gradually acclimate to saltwater

- Estuary and ocean dynamics help control salmon productivity, biodiversity and reduce impacts from changing ocean and other conditions.
Importance of Lower Columbia River and Estuary to Juvenile Salmon

- Extensive use of shallow water and vegetated habitats within the estuary by juvenile Chinook and to a lesser degree chum and coho
- Growing awareness of the importance of the Columbia River estuary within salmonid life cycles
- Protection and restoration of important salmonid habitats within the estuary has been identified as a priority for salmon recovery
Lower Columbia Estuary Partnership

• Lower Columbia river and estuary is part of National Estuary Program (NEP)
• Lower Columbia River Estuary Partnership (non-profit) established in 1995 by the governors of Washington and Oregon and EPA
 ➢ Lack of focus on the lower river and estuary
 ➢ Bi State findings documented degradation of lower river
• Through our guiding management strategy, we work to fund and implement restoration projects to improve habitat conditions for salmon and other wildlife.
Restoration Investment in the Lower Columbia

- Secured $10+ million for projects since 2003
- Funded 45 projects with 100+ partners
- Require effectiveness monitoring to evaluate investment
Estuary Partnership’s Effectiveness Monitoring (AEM)

- AEM Program began in 2008 with 4 pilot sites to assess uncertainties affecting restoration success
- Provide data to improve restoration strategies (via adaptive management)
- Funded by Bonneville Power Administration (BPA) to address RPA 60 in the 2008 FCRPS Draft Biological Opinion

“Evaluate the effects of selected individual habitat restoration actions at project sites relative to reference sites and evaluate post-restoration trajectories based on project-specific goals and objectives”
Water Quality Methods

• Each AEM site has a Monitoring Plan with objectives for the site, data collection methods and analysis

• Standardized water quality methods for monitoring the effects of habitat restoration projects in the lower Columbia River and estuary

• Monitoring controlling factors, structure and function of tidal wetlands

• Hydrology & Water Quality focus of this talk
Site Selection Process

- Estuary and Oceanic Subgroup (EOS; BPA, USACE, NOAA, PNNL, EP) reviewed 12 candidate sites
- Criteria:
 - tidally influenced wetlands
 - funded by BPA and USACE
 - included baseline monitoring
 - and restored over multiple years
- Recommendations:
 - Include different actions, habitats, and river reaches
 - Pair with reference sites where possible
 - Fewer sites, more intensively monitored
Type of Data Collected
...varied by restoration action

<table>
<thead>
<tr>
<th>Site</th>
<th>Mirror Lake</th>
<th>Scappoose Bottomlands</th>
<th>Fort Clatsop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>Bottomland Forest; stream and wetland complexes</td>
<td>Tidally-influenced emergent wetlands; streams</td>
<td>Brackish wetland</td>
</tr>
<tr>
<td>Restoration Action</td>
<td>Invasive species removal & plantings; culvert passage improvement; LWD</td>
<td>Invasive species removal & plantings; cattle exclusion</td>
<td>Culvert replaced with bridge to improve tidal connectivity</td>
</tr>
<tr>
<td>Temperature*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DO*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>pH*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bacteria and E. coli*</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductivity*</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Depth*</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Water Quality parameters that may be limiting factors for juvenile salmon
Scappoose Bottomlands
Scappoose Bay Site Location
Water Quality Methods

- Invasive species removal, native plantings, cattle fencing
- Three tidally influenced ponds
- Continuous (hourly) full-year water quality data collection

Water Quality Methods

Water Quality Parameter and Equipment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equipment</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature</td>
<td>HOBO Data Logger and YSI 30 Conductivity</td>
<td>(+/-) 0.5 °C</td>
</tr>
<tr>
<td></td>
<td>Meter</td>
<td></td>
</tr>
<tr>
<td>Air Temperature</td>
<td>NIST Digital Thermometer</td>
<td>(+/-) 0.5 °C</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>Hach Dissolved Oxygen Titration Kit</td>
<td>(+/-) 0.3mg/l (ppm)</td>
</tr>
<tr>
<td>pH</td>
<td>Orion pH meter</td>
<td>(+/-) 0.2 pH</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Hach Turbidity Meter</td>
<td>(+/-) 5% of standard value (NTU)</td>
</tr>
<tr>
<td>Conductivity</td>
<td>YSI 30 Conductivity Meter</td>
<td>(+/-) 7% of standard value (µS/cm)</td>
</tr>
<tr>
<td>Depth</td>
<td>HOBO Data Logger</td>
<td>(+/-) 0.5 cm water</td>
</tr>
<tr>
<td>Bacteria and E. Coli Counts</td>
<td>IDEXX Quanti-Tray 2000° MPN</td>
<td>(+/-) 0.5 log (MNP/100ml)</td>
</tr>
</tbody>
</table>

Years and Months of Water Quality Data Collection at Hogan Ranch Ponds 1-3, Teal Creek and Crooked Creek

<table>
<thead>
<tr>
<th>Year/Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T/C</td>
<td>T/C</td>
<td>T/C</td>
<td>T/C</td>
<td>T/C</td>
<td>T/C</td>
<td>T/C</td>
</tr>
<tr>
<td>2009</td>
<td>T/C</td>
<td>T</td>
<td>T/C</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>T/C</td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
</tbody>
</table>

Data Loggers Collecting Temperature Data:
- Teal Creek
- Crooked Creek

Equipment Accuracy

- Water Temperature (HOBO Data Logger and YSI 30 Conductivity Meter) (+/-) 0.5 °C
- Air Temperature (NIST Digital Thermometer) (+/-) 0.5 °C
- Dissolved Oxygen (Hach Dissolved Oxygen Titration Kit) (+/-) 0.3mg/l (ppm)
- pH (Orion pH meter) (+/-) 0.2 pH
- Turbidity (Hach Turbidity Meter) (+/-) 5% of standard value (NTU)
- Conductivity (YSI 30 Conductivity Meter) (+/-) 7% of standard value (µS/cm)
- Depth (HOBO Data Logger) (+/-) 0.5 cm water
- Bacteria and E. Coli Counts (IDEXX Quanti-Tray 2000° MPN) (+/-) 0.5 log (MNP/100ml)
Monitoring Results

- Grey=ideal for salmon, pink=poor, red=lethal
- Continuous temperature, DO and pH, similar before and after cattle exclusion
- Too soon to see effects of native plantings/invasive species removal

- **Temperature**
 - 7-15.5°C Ideal Salmon Range
 - >18°C Poor
 - >25°C Lethal

- **DO**
 - >11 ppm Ideal Range for Salmon
 - <6 ppm Lethal for Salmon

- **pH**
 - Ideal Salmon pH Range between 6.5-8
Turbidity and Conductivity

• Slight decrease in turbidity before and after restoration
• Slight decrease in conductivity—which can indicate decreased turbidity and bacteria levels

Turbidity-red indicates poor quality salmon habitat

Conductivity
Monthly E. coli Bacteria Sampling

- Prior to cattle exclusion E. coli levels were higher than ODEQ (red) and EPA (pink) recommendations (>235 MPN/100ml)
- Significantly lower E. coli in all ponds, post-cattle exclusion (< 40 MPN/100ml)

*Property was Exposed to Cattle for Several Weeks in 2009
Ft. Clatsop
Ft. Clatsop Site Location
Ft. Clatsop Tidal Reconnection

- Replacement of culvert with bridge for tidal reconnection
- Monitoring of tidal slough (and reference site)
- Continuous (hourly) full-year water quality data collection
Ft. Clatsop Reconnection Results

• Tidal depth greater after reconnection

February spring tides pre- vs. post-
restoration

February neep tides pre- vs. post-
restoration
Ft. Clatsop Reconnection Results

• Maximum amplitudes increased from 7 ft to 10 ft
• For approximately 50% of the time there is no difference in height of water, but from 10-50% of time there is greater inundation post-restoration
Ft. Clatsop Reconnection Results

• Restoration of higher salinity intrusion as shown in conductivity levels

February spring tides pre- vs. post-restoration

February neap tides pre- vs. post-restoration
Ft. Clatsop Reconnection Results

- No clear temperature results for the temperature limiting period for salmonids pre- versus post-restoration
Mirror Lake
Mirror Lake Site Location

Figure 5. Locations of Restoration Activities
Mirror Lake Temperature Methods

- Connection to Columbia River is I-84 culvert
- Vegetation restoration, Large Woody Debris inputs
- Hourly monitoring between July and September
- Inter-annual temperature variation and habitat suitability for juvenile salmon
- Use of the seven-day moving average maximum (7DMA) temperatures to monitor stream condition
Mirror Lake Temperature Results

• Low temperature in upper reaches (14°-18° 7DMA), high downstream temperatures (>23° 7DMA)

• Range of 7-day maximums 16° to 28° (on average 16.4°-26.3°) across length of study area
Year-to-Year Variation by Site

- Variation between years is 1° - 2°, however, downstream locations up to 3° of variation between years

- In most years, approximately 41% of site has sustained high temperatures in lethal range for salmon

- Little year-to-year variation in habitat suitability
Conclusions

• Some restoration measures can show results within the first few years after construction, some may take longer
• Sources of unforeseen variation, such as landowner changing water level at site, cattle breaking through fencing can complicate results
• Difficult to tease out restoration effects in an inherently very complex system (Bonneville Dam water releases, tidal influences and differences in hydrology from upstream to downstream in the estuary)
• Important to set out objectives of the restoration project and methods and analysis for the monitoring to tie the two together
• Need to conduct periodic checks and synthesis of data to make sure monitoring is on track and to adaptively manage site
Questions?