Long-term and Seasonal Trends in Phosphorus Loading to Lake Erie: Links to Harmful Algal Blooms with Insights from 2011 and 2012

Laura Johnson, David Baker, Peter Richards, Richard Stumpf, Aaron Roerdink, Rem Confesor, Jack Kramer, Ellen Ewing, and Barbara Merryfield

Tom Bridgeman
Algal blooms in Lake Erie have been increasing.

2011 harmful algal bloom

Primarily *Microcystis aeruginosa*

Data from Tom Bridgeman, UT-LEC
see Bridgeman et al. 2013 JGLR

4 largest algal blooms since mid-1990s have occurred over the past 6 years

May 2013 issue of National Geographic
Algal blooms were prevalent in the 1970s and the lake appeared to recover in the mid-1990s.

• Phytoplankton biomass
• Kane et al. 2014, JGLR
Trends in Total Phosphorus

Components of Lake Erie Total Phosphorus Load Estimation
- Unmonitored nonpoint sources
- Tributary monitored nonpoint sources
- Indirect point sources
- Direct point sources
- Atmospheric Deposition
- Lake Huron
- Total load estimates

Lake Erie, Total Phosphorus Target Load
Why are algal blooms increasing?

• Long-term trends in phosphorus and discharge
• 2011/2012 phosphorus loading and discharge
Heidelberg Tributary Loading Program

- 16 stations paired with USGS gages
- Monitoring began in 1975
- Longest, most detailed program of its kind in US
 - Over 142,000 water samples analyzed
- Focus today on Sandusky, Maumee, and Cuyahoga
• Samples collected 3x a day
• Analyzed for all major nutrients and suspended sediments

Colorimetry for TP, DRP, TKN, NH₄, Si

Ion chromatography for NO₃, NO₂, Cl, F, SO₄

Suspended Sediments
Long-term discharge and phosphorus trends
Annual discharge

- Upward trend for all rivers over the period of record
Annual discharge

• 5 year running mean show a marked increase since 2000
Annual total particulate P
77% of TP is particulate

TPP FWMC has decreased when analyzed via ANCOVA to correct for discharge, *(Richards et al. 2009 JSWC)*

\[r^2 = 0.02 \quad P = 0.37 \]

\[r^2 = 0.02 \quad P = 0.40 \]

\[r^2 = 0.04 \quad P = 0.29 \]
Annual dissolved reactive P loads and FWMCs have been increasing in agricultural watersheds since the mid-1990s.
Annual dissolved reactive P unit area loads are increasing in subwatersheds of the Sandusky as well as other agricultural rivers.

- River Raisin is less flashy than other agricultural watersheds
 - only 50% agriculture
 - drains sandier soils
2011 vs. 2012
2011 vs 2012

09/03/2011 (DOY=246)

Big Contrast!

08/30/2012 (DOY=243)
Annual loads were very similar between 2011 and 2012.
Maumee River in spring March-June

- Spring loading appears to better describe algal blooms
- Lake Erie is responsive to reduced phosphorus in a short timeframe
Relationship between **Maumee** spring loads and cyanobacterial index

Stumpf et al. 2012, PLoS ONE

- Strongly related to spring discharge
- Less related to DRP loads
Maumee River in spring

March-June

Data from Tom Bridgeman, UT-LEC
How is 2014?

Cumulative loadings

Maumee Discharge

Maumee Dissolved P

- HAB forecast for 2014 planned for July 10th
Summary

• Although TP loads to Lake Erie reached the target in 1981, algal blooms have returned and have been increasing over the past decade.

• Over this time, dissolved reactive P has increased drastically from agricultural rivers.

• It appears spring loading (March-June) best predicts the extent of algal blooms in the western basin.

• Our inability to accurately predict the magnitude of 2013 indicates we still have more to learn!
For more information visit:
http://www.heidelberg.edu/NCWQR
Or contact me at ljohnso1@heidelberg.edu

http://www.facebook.com/NCWQR
Why is dissolved P increasing?

Farm soil
Why is dissolved P increasing?

- Climate change
- Surface application of P fertilizers
- Application on frozen ground or shortly before precipitation
- P stratification
- Tile drain intensity
- Tile delivery from macropores
Weekly bulletin produced throughout season

Google “Lake Erie HAB bulletin”