MULTIPLE USES OF DATA FROM AN AUTOMATED MONITORING NETWORK IN A 6-MILE URBAN STORMWATER TUNNEL

BRITTA SUPPES
CRWD MONITORING COORDINATOR
5/2/2014
1. CRWD Background
 – Organization
 – Watershed Description
 – CRWD Monitoring Program

2. Trout Brook Interceptor/Subwatershed
 – History
 – Monitoring Goals
 – Monitoring Methods
 – Data & Results
 – Practical Application
Capitol Region Watershed District

- Local unit of gov’t
- Drainage area: 41 mi²
 - Storm sewer network
 - 5 lakes
 - 13 mi. of Mississippi
- Population: 245,000
- Highly urbanized
 - 42%+ impervious
CRWD Monitoring Program

• Monitoring data foundation of CRWD
 – 10-yr program
• To Identify water quality problem areas
• Quantify runoff pollutant loading to Mississippi R.
• Evaluate BMP performance
• Data for model calibration
• Promote understanding of CRWD water resources
MONITORING CASE STUDY:

Trout Brook Interceptor & Subwatershed
Background:
Trout Brook Subwatershed

• 8,000 ac urban subwatershed
• Originally a natural channel
 – 1900-1950s: Put underground
• Drains to Mississippi R.
• 2 Lakesheds
 – Como & McCarrons
• Trout Brook Interceptor (TBI)
 Storm tunnel owned & operated by CRWD
Trout Brook Interceptor (TBI)

- 6-mile storm tunnel
- 5-12 ft in diameter
- CRWD acquired TBI in 2006
- CRWD has MS4 Permit for TBI
 - Municipal Separate Storm Sewer System
 - Goals:
 1. Reduce discharge of pollutants
 2. Protect and improve water quality
 3. Comply with water quality requirements of Clean Water Act
TBI Questions --

- How much water is discharging?
- What is the quality of the water?
- What is the quantity of annual pollutant loads to Mississippi R. from TB subwatershed?
- Are there trends in water quantity and quality?
- Where is the polluted water coming from?
- Does TBI safely & adequately convey runoff?
Trout Brook Monitoring

• Monitoring began in 2005 (to present)
 – 9 year record

• Data to Characterize TB Sub-WS:
 – Precipitation
 – Discharge
 – Water Quality
 – Stormwater Pond Levels
 – Lakes:
 • Water Quality
 • Level
 – BMP Performance
Discharge & Water Quality Stations
Trout Brook Monitoring Stations

LAKES & PONDS:
- Lake Water Quality
- Level & Discharge
- 2 Lakes
- 6 Ponds
What is Data Used For?
What Is Data Used For?

1. Pollutant Loading Calculations:
 - Discharge, TP, & TSS

2. Hydraulic & Hydrologic Modeling:
 - Conveyance & surcharge evaluation
 - Operation & maintenance of TBI

3. Inform Project Design:
 - Optimal BMP locations
 - BMP construction
 - Compliance verification for permits
 - Tunnel replacement and rehabilitation
Loading Calculations
Trout Brook Sub-WS Results

Total Suspended Solids (TSS)
Trout Brook Sub-WS Results

CHLORIDE (Cl-)

Combined Baseflow + Stormflow

2013

Mean (2005-2012)

Cumulative Cl Yield (lb/ac)
Regional Uses of Loading Data

• TMDL development:
 – South Metro Mississippi R. Turbidity TMDL
 – Upper Mississippi R. Bacteria TMDL
 – Twin Cities Metro Area Chloride Project

• CRWD Annual Report

• Other regional uses of data:
 – Research/Academia
 – Other local orgs or municipalities
Hydraulic & Hydrologic Modeling
Hydraulic & Hydrologic Modeling

• **XP-SWMM:**
 – Hydraulics within tunnel
 – Document conveyance & surcharge issues in TBI

• **P8 Model:**
 – BMP Performance
 – BMP location identification

• Monitoring data to calibrate & validate models
 – Models rely on monitoring data
Project Design
Project Design

• Trout Brook Nature Sanctuary Project
 – Creation of 3,000 ft natural stream channel
 – “Daylighting” stormwater
MONITORING DATA USED for:

- Water source identification & flow calculations for perennial baseflow
- Diversion structure & lift station design
- Channel & floodplain design
- Stormwater treatment ponds
- Water chemistry—can stream support aquatic life?
Project Design

MONITORING DATA USED for:

• Tunnel Design & Sizing

• Bypass & water diversion structure design during construction

• Real-time flow data for day-to-day maintenance & tunnel entry
Summary

• TBI monitoring will continue into future
 – Climate adaptation
 – Sub-sub watershed monitoring
 – Remote data access

• A comprehensive monitoring network is beneficial and allows us to:
 – Calculate loads
 – Calibrate/validate models
 – Inform project design & management decisions
QUESTIONS?

Britta Suppes
Monitoring Coordinator
britta@capitolregionwd.org

Capitol Region Watershed District

www.capitolregionwd.org