Results of EPA’s Assessment of Fish Tissue from U.S. Rivers for Mercury and Persistent Organic Compounds with Implications for Aquatic Life and Human Health

NWQMC
May 1, 2014
Cincinnati, Ohio
Authors

John Wathen, presenting author & Leanne Stahl
U.S. Environmental Protection Agency
Office of Water/Office of Science and Technology
Washington, DC

James Lazorchak & Angela Batt
United States Environmental Protection Agency
National Exposure Research Laboratory, Ecological Exposure Research Division
Cincinnati, OH

Blaine Snyder
Tetra Tech, Inc.
Owings Mills, MD

Harry McCarty
CSC
Alexandria, VA

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA or those of the U.S. Government
Fish Tissue Indicator
Mercury data- (n=541/542)
sites: 162 Urban sites
379 Non-urban

Legacy organic contaminant data-
(n=540/542):
163 Urban sites
377 Non-urban
National Rivers and Streams Assessment

• Out of 1,924 sites on rivers within the conterminous United States- 542 sampled that are 5th order or greater in size

• Randomized site selection process yields nationally-representative weighted results

• Analyses are of sites where fish samples were collected and fillets analyzed (sampled population) which represent approximately 51,663 river miles.
National Rivers and Streams Assessment
Urban and Non-urban Sampling Locations by NARS Major Ecoregion

NRSA Sampling Locations $n = 542$

U.S. Environmental Protection Agency
Sample Collection

• Sampling conducted 2008-2009
• A single composite sample consisting of five adult fish of the same species and similar size (min>75% max) of fish was collected from each site.
• Target species: ubiquitous, abundant, easily identified, consumed by humans, large.
• Fillets were composited using the batch method.
NRSA Analyses

541 sites: Mercury

Direct Mercury Analyzer EPA method 7473

(Journal article in preparation)

Organic Analytes for 540 Sites

<table>
<thead>
<tr>
<th>21 PCB Congeners</th>
<th>20 Organochlorine pesticides</th>
<th>4,4'-DDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB 8-209</td>
<td>Aldrin</td>
<td>Dieldrin</td>
</tr>
<tr>
<td>8 PBDE Congeners:</td>
<td>alpha-BHC</td>
<td>Endosulfan II</td>
</tr>
<tr>
<td>BDE 47, 66, 99,100, 138, 153, 154, 183</td>
<td>gamma-BHC</td>
<td>Endrin</td>
</tr>
<tr>
<td>Method: GC-ECD</td>
<td>alpha-Chlordane</td>
<td>Heptachlor</td>
</tr>
<tr>
<td></td>
<td>gamma-Chlordane</td>
<td>Heptachlor epoxide</td>
</tr>
<tr>
<td></td>
<td>2,4'-DDD</td>
<td>Hexachlorobenzene</td>
</tr>
<tr>
<td></td>
<td>4,4'-DDD</td>
<td>Mirex</td>
</tr>
<tr>
<td></td>
<td>4,4'-DDE</td>
<td>cis-Nonachlor</td>
</tr>
<tr>
<td></td>
<td>2,4'-DDT</td>
<td>trans-Nonachlor</td>
</tr>
</tbody>
</table>

(Journal article in preparation)

8 PCB Congeners: 2,4'-DDD, 4,4'-DDD, 4,4'-DDE, 2,4'-DDT
Additional Fish Tissue Analytes not reported here

541 Sites:

Selenium: ICP-OES

Moisture: Karl Fisher titration

Lipids: Gravimetric method

163 urban sites:

13 PFCs (HPLC-MS/MS)

Poster here now

(Journal article in preparation)

4 synthetic musks and two of their metabolites

(Presented SETAC 2011)
Data are Nationally Representative

- Reporting today on 50 analytes x 540 sites = 27,000 data points
- Weighted data and means are nationally-representative and representative by:
 - Ecoregion (3); and
 - Urban and Non-urban sub-populations
- Mercury fillet tissue results converted to whole fish values for wildlife impact estimation
- Some unweighted site data depictions and analyses are not nationally representative
Hg Statistics

<table>
<thead>
<tr>
<th>Statistic * (Hg ww ug/kg)</th>
<th>National n =541</th>
<th>Non-Urban n =379</th>
<th>Urban n=162</th>
<th>EHIGH n =190</th>
<th>PLNLOW n =280</th>
<th>WMTS n =71</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Miles</td>
<td>51,663</td>
<td>40,752</td>
<td>10,911</td>
<td>14,738</td>
<td>29,739</td>
<td>7,186</td>
</tr>
<tr>
<td>River km</td>
<td>83,145</td>
<td>40,752</td>
<td>17,559</td>
<td>23,718</td>
<td>47,861</td>
<td>11,564</td>
</tr>
<tr>
<td>50th % ile*</td>
<td>175.6</td>
<td>170.5</td>
<td>200.6</td>
<td>176.0</td>
<td>180.1</td>
<td>125.3</td>
</tr>
<tr>
<td>95th % ile*</td>
<td>583.6</td>
<td>578.8</td>
<td>803.3</td>
<td>535.2</td>
<td>578.8</td>
<td>854.1</td>
</tr>
<tr>
<td>Mean*</td>
<td>228.9</td>
<td>223.3</td>
<td>250.2</td>
<td>210.0</td>
<td>231.4</td>
<td>257.5</td>
</tr>
<tr>
<td>Max. *</td>
<td>1,419</td>
<td>1,419</td>
<td>854</td>
<td>854</td>
<td>1,419</td>
<td>1,272</td>
</tr>
</tbody>
</table>
Hg Percentile Data by subgroup

- 120 ug/kg 1 meal/week threshold (Mink WV ~100 ug/kg)
- 300 ug/kg HH WQC, Eagle WV

 ug/kg (ppb)
(A.R. Olsen)
Hg subpopulations

Percentages of Samples in Subgroups <300 ug/kg and >300 ug/kg Hg
Standard error bars indicated

- National: 75% (>300), 25% (<300)
- EHIGH: 77% (>300), 23% (<300)
- PLNLOW: 78% (>300), 22% (<300)
- WMTS: 79% (>300), 21% (<300)
- Urban: 80% (>300), 20% (<300)
- NonUrban: 81% (>300), 19% (<300)
Mercury (Hg) Results

- All (100%) of the 541 fish fillet samples analyzed for Hg content >3.33 ug/kg (ppb) quantitation limit for the method.
- Weighted values for 137/541 samples (25.4%) exceeded the EPA HHWQC for Hg of 300 ug/kg, = 13,071 river miles (21,154 km)/ 51,663 miles (83,143 km) of sampled U.S. rivers (compare with 48.9% of lakes in NFLTS).
- Risk to piscivorous avian species (eagle) are similar to risks for humans at 300 ug/kg (@two meals per month level), whereas mink are more at risk than the avian species (and humans) @ the HH 1 meal per week (fillet) threshold of 120 ug/kg.
- No statistically-significant differences between non-urban/urban sites and among eco regions (EHIGH, PLNLOW, WMTS).
- Apparent higher 95th %ile, mean, and % of sites exceeding HHWQC in WMTS likely attributable to natural localized Hg source (geothermal area/Hg mining history).
Focus of organics analysis is on PCBs, PBDEs, Chlordane, and DDT, Dieldrin

PCBs

National Data
- Detected 505/540 sites = 93.5%
- National Mean = 32.7 ug/kg
- %>Screening Value (12ug/kg) = 48.0%

Non-Urban Sites (n=377)
- Detects Non-urban = 343
- Max Non-urban = 411.5 ug/kg=ppb
- Mean Non-urban = 26.9 ug/kg
- %>Screening value= 42.0%

Urban Sites (n=163)
- Detects Urban = 162
- Max Urban = 856.5 ug/kg
- Mean Urban = 54.2 ug/kg
- %>Screening value= 69.8%
Summed PCBs (21 of 209 congeners) in Fish Tissue Samples

All summed PCB fish tissue concentrations with Consumption frequency thresholds

(Cancer Endpoint Values 1/100,000)

Plotted values are unweighted site data.

Wildlife Value (WV) Mink (130 ug/kg)
No Consumption Level (94 ug/kg)
One meal/month Level (47 ug/kg)
One meal/week Level (12 ug/kg)

Note: Unweighted site data
Weighted Mean PCB Congener Concentrations in Fish Tissue from U.S. River Sites - Non-Urban and Urban
PBDEs

National Data
• Detected 497/540 sites = 92.0%

• National Mean = 11.6 ug/kg

• 1 Urban Site exceeded 210 ug/kg SV

Non Urban Waters (n=377)
• Detects Non-urban = 340
• Max Non-urban = 151.1 ug/kg=ppb
• Mean Non-urban = 8.6 ug/kg

Urban Waters (n=163)
• Detects Urban = 157
• Max Urban = 310.7 ug/kg
• Mean Urban = 22.5 ug/kg
PBDEs—pervasive, lower concentrations, lower toxicity

(Plotted values are unweighted site data)

CA Advisory Level

Mink WV
Comparison of Weighted Mean PBDE Compound Concentrations in Fish Tissue from Non-Urban and Urban Sites in U.S. Rivers
Total Chlordane and Summed DDT(s)

Total Chlordane
Detected 481/540 locations = 88.5%
National Mean = 6.3 ug/kg

- **Non Urban Waters (n=377)**
 - Detects Non-urban = 325
 - Max Non-urban = 87.1 ug/kg
 - Mean Non-urban = 5.1 ug/kg

- **Urban Waters (n=163)**
 - Detects Urban = 153
 - Max Urban = 311.4 ug/kg
 - Mean Urban = 10.8 ug/kg

Summed DDT
Detected 533/540 locations = 98.7%
National Mean = 13.8 ug/kg

- **Non Urban Waters (n=377)**
 - Detects Non-urban = 370
 - Max Non-urban = 170.3 ug/kg
 - Mean Non-urban = 12.3 ug/kg

- **Urban Waters (n=163)**
 - Detects Urban = 163
 - Max Urban = 294.3 ug/kg
 - Mean Urban = 19.0 ug/kg
Percentage Detections of Other Organic Pesticide Compounds in Fish Tissue Samples from Non-Urban and Urban Sites

- Aldrin
- Dieldrin
- Endrin
- Lindane
- Heptachlor
- Heptchl Epox.
- Mirex

Non-urban
Urban
Human health screening values (SVs)- 1 meal/week

<table>
<thead>
<tr>
<th>Compound*</th>
<th>Non-cancer SV</th>
<th>Cancer SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane (total)</td>
<td>1200</td>
<td>67</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>120</td>
<td>1.5</td>
</tr>
<tr>
<td>DDT (summed)</td>
<td>120</td>
<td>69</td>
</tr>
<tr>
<td>PCBs (summed)</td>
<td>47</td>
<td>12</td>
</tr>
<tr>
<td>PBDEs (summed)</td>
<td>210@</td>
<td>NA</td>
</tr>
</tbody>
</table>

(*ug/kg wet weight)

- @California sport fish advisory level
Wildlife risk values (WVs)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mink WV</th>
<th>Kingfisher WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane</td>
<td>830</td>
<td>4.5</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>20</td>
<td>360</td>
</tr>
<tr>
<td>DDT (total)</td>
<td>360</td>
<td>155</td>
</tr>
<tr>
<td>PCBs (total)</td>
<td>130</td>
<td>440</td>
</tr>
<tr>
<td>PBDEs@</td>
<td>32</td>
<td>13 (Kestrel)</td>
</tr>
</tbody>
</table>

(*ug/kg wet weight)

@Canadian Environmental Protection Act, 1999 Federal Environmental Quality Guidelines Feb. 2013
Time for some statistics: Weighted Data: Fish Tissue Concs. in Non-urban vs. Urban Sites

<table>
<thead>
<tr>
<th>Compound</th>
<th>Family</th>
<th>Mean Conc.(ug/kg)</th>
<th>Median Conc.(ug/kg)</th>
<th>St. Dev.(ug/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCBs</td>
<td></td>
<td>26.9</td>
<td>54.2</td>
<td>8.6</td>
</tr>
<tr>
<td>PBDEs</td>
<td></td>
<td>8.6</td>
<td>22.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Total Chlordane</td>
<td></td>
<td>5.1</td>
<td>10.8</td>
<td>1.6</td>
</tr>
<tr>
<td>DDTs</td>
<td></td>
<td>12.3</td>
<td>19.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td>2.6</td>
<td>3.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Bold = greater in non-urban vs urban comparison
NARS Major Ecoregions
Significance of Differences Between Subgroups

<table>
<thead>
<tr>
<th>Compound Family</th>
<th>Non-urban/Urban</th>
<th>EHIGH/PLNLOW</th>
<th>EHIGH/WMTS</th>
<th>PLNLOW/WMTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Greater mean</td>
<td>P value</td>
<td>Greater mean</td>
<td>P value</td>
</tr>
<tr>
<td>PCBs Urb. EHIGH</td>
<td>Urban</td>
<td>0.006</td>
<td>EHIGH</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBDEs No E-R diff.</td>
<td>Urban</td>
<td><0.001</td>
<td>EHIGH</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlordanes less WMTS</td>
<td>Urban</td>
<td>0.107</td>
<td>PLN LOW</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDTs Urb.PLNLOW</td>
<td>Urban</td>
<td>0.017</td>
<td>PLN LOW</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin less WMTS</td>
<td>Urban</td>
<td>0.36</td>
<td>PLN LOW</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparisons based on Z-Tests using calculated weighted means and standard errors.
Top Quartile by Summed PCB Conc. of PCBs, PBDEs, Chlordanes, & DDTs in Fish Tissue from U.S. Rivers 5th order and Greater

(Site data depicted for illustrative purposes)
Co-occurrence of Total PCBs, PBDEs, Chlordanes, and DDTs in Fish Tissue at Concs. above Median Values

Synthesis 1- National Organics Data

- Dieldrin, chlordane, DDT, PCBs and PBDEs are pervasive in fish tissue samples collected from U.S. rivers-detects in fish tissue average 88.8% of river miles.

- The extent to which these compounds exceed risk-based screening values varies (weighted national data):
 - **PCBs 48% of sites**
 - PBDEs 0.26% (1 Site)
 - Summed DDTs 2.3% of sites
 - Total Chlordane 0.56% of sites
 - **Dieldrin 31.2% of sites**

- Extent of effect depends on conc. and SV or WV
Organics Synthesis 2

- Unlike Hg concentrations, PCBs, PBDEs, and DDT compounds occur at concentrations that are significantly higher in fish from urban sites nationally than from non-urban sites.

- PCBs concs. are highest in EHIGH, significantly higher in the PLNLOW and EHIGH ecoregions than in the WMTS.

- There is no significant difference in PBDE concentrations in fish tissue among eco-regions*

- DDT concentrations are significantly elevated in PLNLOW relative to EHIGH, but not to WMTS(CA ag?)

- Chlordane concentrations in fish tissue are significantly higher in samples from the PLNLOW and EHIGH than WMTS. No difference between non-urban and urban sites.
 - *(Previous analysis of POTWs in urban locations –SETAC 2012)
Conclusions

• Monitoring of fish tissue for assessment and for fish consumption advisories continues to be important for organic compounds as well as Hg
• Individual compounds seldom occur alone in fish tissue. Therefore, the presence and effects of any of these or other contaminants must be viewed in the context of co-occurring compounds
• Any new persistent organo-halogen compounds add to the existing overall organo-halogen burden in fish tissue potentially consumed by humans and wildlife.
Acknowledgements

- This assessment was the product of the combined efforts of many:
 - Sampling was conducted by state, federal agency, and contractor crews
 - The NRSA is operated by our colleagues in the EPA Office of Wetlands, Oceans, and Watersheds, and
 - The EPA Office of Research and Development, Western Ecology Division, are responsible for the sample design and for derivation of nationally-representative descriptive statistics
 - Mission support from Tetra Tech, CSC, and other contractors
Thanks for your interest