Radar Remote Sensing for Identifying and Characterizing Oil Slicks in Coastal & Open Waters

Cathleen E. Jones
Jet Propulsion Laboratory, California Institute of Technology

3 May 2016
10th National Monitoring Conference, National Water Quality Management
Tampa, FL
OIL SPILLS
INFORMATION TO GUIDE RESPONSE

Key Parameters:
• Oil spill position
• Slick type / origin
• Spill extent
• Spill thickness & volume
• Oil-to-water emulsion ratios
• Transport
• Weathering
Radar Remote Sensing of Oil Slicks

RADAR:
Scattering comes from sea surface roughness at the scale of the radar wavelength

ADVANTAGES:
Day/Night Operation
Image through clouds
All latitudes/all seasons

- Tilted Bragg Scattering Theory (small perturbation model)
- Scattering is due to $k_s = 2k \sin \theta_i$
- Small scale roughness is tilted by long wavelength waves
Oil / Water Dielectric Constant

Complex Permittivity
\[\varepsilon = \varepsilon' - i\varepsilon'' \]

Sea water \[\varepsilon_{sw} = 80 - i70 \] - High conductivity surface

Crude oil \[\varepsilon_{o} = 2.3 - i0.02 \] - Low conductivity surface

Ocean Surface (no oil)
\[\varepsilon_{SW} = 80 - i70 \] - Frequency, temperature dependent

Ocean Surface + Thin Sheen
\[\varepsilon_{SW+Sheen} \approx 80 - i70 \] - Reduced roughness
- Sheen too thin to change \[\varepsilon_{sw} \]

Emulsion = Mixture of Oil + Sea water
\[\varepsilon_{Mixture} = \varepsilon_{SW} + \varepsilon_{O} \] - New dielectric layer with \(\varepsilon \) mixture
- Alters scattering

Radar backscattered signal responds to volumetric fraction of emulsified oil as a mixture of oil and seawater

Source: Benjamin Holt, JPL
NASA UAVSAR Airborne Radar
UAVSAR Gulf Oil Spill Campaign
22-23 June 2010 Deployment

- Covered main slick & Gulf coastline
- 2 days, 3 flights, 21 flight hours
- ~5500 km of flight lines
- Imaged an area of 120,000 km²
Study Oil Spill Detection and the Impact of Oil Inundation in Wetland Ecosystems Using High Resolution Polarimetric L-band Radar

- Develop and validate algorithms for improved discrimination of oil slicks on water and collect data that will enable us to better determine oil properties with radar.

- Study the use of radar for determining the extent of oil penetration into sensitive coastal ecological zones, in particular, to map the spread of oil from the coastline into coastal wetlands.

- Use the radar data to determine the extent and nature of the damage to different coastal ecosystems and to track ecosystem recovery.

- Determine how SAR can better be used during oil spill response, either in open water, on the coast, or in inland waters.
UAVSAR GULF OIL SPILL CAMPAIGN
22-23 JUNE 2010 DEPLOYMENT

Beauregard Island
Bay Jimmy
Bay Batiste
Wilkinson/Manilla Bay

Shoreline Cleanup Assessment Team Map for June 23, 2010

UAVSAR Validation Shoreline Impact Assessment, June 23-24, 2010
Bruce Davis (DHS, Science and Technology Directorate), Philip Kuper and Kara Holekamp (Computer Science Corp., Stennis Space Center), Steve Tate (ASRC Research and Technology Solutions, Stennis Space Center)
Oil Intrusion Into Coastal Waterways
Barataria Bay, Louisiana

Barataria Bay, Louisiana:

Oil on water shows as dark areas in the radar image.

Oiled vegetation along the shoreline shows up brighter in the cross-polarization (HV) returns.

Oil Impact to Wetlands
Barataria Bay, Louisiana

UAVSAR, 1.7 m resolution (HH-red, HV=green, VV=blue)
AUTOMATED OIL MAPPING IN COASTAL WATERS
BARATARIA BAY, LOUISIANA

Unsupervised Wishart Classification using Freeman-Durden Classes

Oiled Beaches

Elmer’s Island, Louisiana
June 23, 2010

High resolution L-band radar can be used to identify newly oiled areas overnight to direct response crews the following day.
Containment Boom Monitoring

UAVSAR, 1.7 m resolution (HH-red, HV=green)
Polarimetric Backscatter from the ocean surface is dominated by Bragg scattering from surface capillary waves.

\[
\begin{pmatrix}
S_{HH} & S_{HV} \\
S_{VH} & S_{VV}
\end{pmatrix}
\xrightarrow{\text{Bragg}}
\begin{pmatrix}
R_{HH} & 0 \\
0 & R_{VV}
\end{pmatrix}
\]

Oil damps the small-scale waves, causing a departure from Bragg scattering.

Polarimetric Decomposition Methods Studied:
• Entropy/Anisotropy/Alpha (Cloude-Pottier)
• Shannon Decomposition (information theory)

Weather conditions: sea state 0.8-1.0 m SWH, winds 4-6 m/s @ 110°

Oil Characterization with Radar Remote Sensing

From the NASA / UAVSAR Airborne Radar --- Deepwater Horizon Spill

Emulsion stringers:

Dispersants application:

Photos taken over the slick on 6/23/2010 between 16:00 and 20:00 UTC (NOAA RAT-Helo and EPA/ASPECT)

C. Jones, B. Holt, S. Hensley (JPL/Caltech), B. Minchew (Caltech), Studies of the Deepwater Horizon Oil Spill with the UAVSAR Radar, AGU Monograph Series, 2011.
Oil Characterization with Radar Remote Sensing

From the NASA / UAVSAR Airborne Radar --- Deepwater Horizon Spill

Oil concentrated along wind rows:

Photos taken over the slick on 6/23/2010 between 16:00 and 20:00 UTC (NOAA RAT-Helo and EPA/ASPECT)

C. Jones, B. Holt, S. Hensley (JPL/Caltech), B. Minchew (Caltech), Studies of the Deepwater Horizon Oil Spill with the UAVSAR Radar, AGU Monograph Series, 2011.
Volumetric Concentration of Oil in Emulsion

Bragg scattering theory describes well both scattering from clear water and from the oil slick.

We derive the volumetric concentration of oil within emulsion in the main oil slick using a fit for the dielectric coefficient within the Bragg scattering model.

For thick oil slicks we can estimate the volumetric oil concentration from the change in dielectric of the scattering surface.

Controlled experiment for radar remote sensing

- Controlled releases of emulsions with a range of oil fractions (40%, 60%, 80% OIL)
- Plant oil used as biogenic slick simulator
- All slicks left untouched on sea surface
- Radars used: UAVSAR/Radarsat-2/TerraSAR-X/RISAT-1/ALOS-2

Collaborators: Camilla Brekke, Stine Skrunes, Øyvind Breivik (Norway), Ben Holt (JPL)
NORSE2015: Norwegian Spill Experiment (June 2015)

Release of Plant Oil & 4 different emulsions (40:60, 60:40, & 80:20 Oil-to-Water ratio)

80:20 Emulsion During Release:

Day 2 08:30 UTC

Photo: Øyvind Berntsen (Met.)
Slick Development

5:46 AM UTC

6:52 AM UTC

7:44 AM UTC

8:53 AM UTC

11:45 AM UTC

13:18 PM UTC

E80
E60
E40
Plant oil

wind

wind
1. All slicks initially expand primarily along the wind direction.

2. The plant oil forms a circular shape & radar doesn’t measure further expansion.

3. Emulsion with highest oil fraction persists on the surface the longest of the 3 mineral slicks.

4. Plant oil persists on the surface the longest of all the slicks.

5. The slicks are transported more like the submerged buoy than the wind drift buoy.

Reference: C. E. Jones et al., Measurement and Modeling of Oil Slick Transport, manuscript in preparation.
Summary

Radar Remote Sensing:
- Track oil intrusion into wetlands
- Identify oil on beaches
- Find thickest oil within a spill
- Slick weathering
- Slick transport

Mississippi River Delta
UAVSAR, 7 m resolution