Impacts of Lake Erie Harmful Algal Blooms on the Abundance and Growth of Larval Fishes and their Prey Resources

Tomena K. Scholze
William W. Taylor
Edward F. Roseman
Nathan Williams
Harmful Algal Blooms (HABs)

- HABs are a growing concern worldwide
- Link terrestrial and aquatic ecosystems
- Cultural eutrophication affects water quality and fisheries
• 1960s-1970s: cyanobacterial blooms
• 1972: Clean Water Act, Great Lakes Water Quality Agreement
• Recent increase in frequency and intensity
 • 1995-2001: minimal HABs
 • 2002-2007: yearly moderate HABs
 • 2008-2015: yearly severe HABs
• Overlap with critical fish habitat in the western basin
Research Hypothesis

• H: Lake Erie *Microcystis* blooms will decrease fishery recruitment indirectly by limiting the availability of suitable prey.
 • Specific focus on walleye, a keystone predator that supports a valuable fishery
 • Prey: Clupeids (alewife, gizzard shad), Notropis spp. (shiners), rainbow smelt
 • Linked to zooplankton indirectly through these prey fishes
 • Trophic cascade framework
Trends in YOY CPUE

• Fishery-independent bottom trawl survey to estimate year class strength
• Total CPUE was not significantly different HAB vs. non-HAB years

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

• HABs associated with lower clupeid and walleye CPUE

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

- Relationship between shiners and HABs depended on species

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

- Rainbow smelt CPUE was higher during HAB years

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

- Alewife, spottail shiner CPUE decreased with increasing HAB severity

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

• Gizzard shad, walleye CPUE is highest during minimal HAB years

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

• Rainbow smelt CPUE is lowest during minimal HAB years

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

- Total CPUE, emerald shiner, mimic shiner is highest during moderate HABs

Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).
Trends in YOY CPUE

• Walleye may withstand moderate HABs, if they switch to less desirable prey (Clupeids → Notropis), and if there aren’t too many consecutive HABs years
Trends in YOY length

- Length as a proxy for growth
- Alewife and gizzard shad were significantly longer in non-HAB years
- Emerald shiner, spottail shiner, rainbow smelt were longer in HAB years
- No significant difference in walleye length in HAB vs non-HAB years
- We see a decrease in YOY abundance (year class strength) because of decreased growth and survival during the larval stage
Trends in larval CPUE and length

• 2015 field study
• Total CPUE, gizzard shad, Notropis spp., and walleye CPUE were higher at sites without HABs
• No significant difference in walleye length at HAB vs non-HAB sites
Zooplankton Trends

- Zooplankton density is higher at HAB sites
 - Copepod density was higher, no significant difference in Daphnia density
- Suggests larvae are not prey-limited during HABs
Summary

- Walleye YOY CPUE is lower during any HAB event because their preferred prey (clupeids) are less abundant.
- Other prey items (Notropis) are available until HABs are consistently severe.
- Larval CPUE (overall) is lower during HABs.
Literature Cited

Acknowledgements

• YOY trends: Produced by Tomena Scholze under written agreement with the Lake Erie Committee (2015).

Questions?