
A Novel Use of R to Couple Hierarchical 
Bayesian Methods with a Spatially Explicit 

Hydrological Model across Regional and 
Continental Scales 

 
Richard B. Alexander and Gregory E. Schwarz 

 

NWQMC 2016 Conference, Tampa, FL, May 2-6, 2016 

National Water Quality Assessment Project 
U.S. Geological Survey 

Reston, VA 



Growing Interest in Bayesian Methods 

Employs conditional probability theory expressed by Bayes' Theorem: 
 

         P[ model| data ]      ∝     P[ model ]      *        P[ data | model ] 
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Hierarchical Bayesian Methods 

Provide flexibility in describing 
complexities in data over space and time 

Model coefficients (and error variance) 
treated as random variables, with 
values that vary in time/space 

Allow partial pooling of 
site data across watersheds 

Allow modeling of 
error variance 

Hierarchical structure nests higher-
order models of parameters (e.g., 
region) within lower-order 
structural models (e.g., monitoring 
stations) 

Partially pooling (“data borrowing”) 
can improve prediction accuracy 
(bias, precision) 

Handles small samples well 



Hierarchical Bayesian Methods 

Improve quantification of model uncertainties (state-
space methods) 

Explore spatial and temporal patterns in the 
uncertainties  

 Identify causes of uncertainties 

Allows separate estimation of measurement errors in 
observations vs. real process-related errors associated 
with the model structure 

Produces more accurate estimates of uncertainties and 
updated predictions of “true” WQ conditions 
 

Provide probabilistic model outcomes 

 Inclusive of uncertainties 

 Avoid prediction biases related to transformed 
response variables 



Challenges in Bayesian Hydrological and 
Watershed Modeling 

Previous Bayesian applications: 

evaluated small catchments with little diversity (e.g., soils, 
climate, land use) 

few systematic comparisons of a wide range of hierarchical 
structures 

 

Reported computational limitations of the available 
software for hydrological models (e.g., WinBugs, RJAGS) 
 

Declarative programming style (e.g., WinBugs) 
inconsistent with imperative procedural style (order 
matters) of many hydrologic models  >>  complicates use 
of the software 



A New-Generation Bayesian Method 

SPARROW 
(USGS) 

USGS SPARROW water-quality model 
 R scripts, with R libraries under development 
 Novel automated construction and execution of 

standard user-selected models:   
Excel parameter table settings >> Stan script  

 Evaluated multi-spatial/temporal scale performance 
 Results:  Improved quantification of uncertainties 

over space/time, with wide-ranging improvements in 
prediction accuracy (small to ~50%) 

Stan 
Bayesian 
(Columbia Univ., 

Gelman et al.) 

Stan 
 Hamiltonian Monte Carlo (HMC) methods – uses a 

more strategic sampling of posterior parameter 
distributions than Markov Chain Monte Carlo 
methods 

 More efficient (~10x faster) and robust 
 R interface (Rstan) uses imperative procedural 

language with C++ translator  



 

USGS SPARROW Water-Quality Model 
SPAtially Referenced Regression on Watershed Attributes (Smith et al., 1997) 

 

Hybrid mechanistic and 
statistical features: 
 Spatially explicit (land/water) 
 Mass-balance constraints 
 Non-conservative transport 
 Parameter estimation using 
least squares optimization 

Home page: http://water.usgs.gov/nawqa/sparrow 

Capabilities: 
 

Predict annual water-quality 
load, yield, and concentration 
for unmonitored stream 
reaches 
 

Assess effects of hydrological 
and biogeochemical processes 
on transport and fate in 
watersheds 
 

Apportion stream loads to 
major pollution sources and 
upstream watersheds 

http://water.usgs.gov/nawqa/sparrow


Mean Annual Streamflow (1997-2007) 
1:500,000 RF1 streams (18 HUC-2 regions) 

(1,778 calibration sites; 890 validation sites) 
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SPARROW Streamflow Models 

Susquehanna River Basin 
Mean Seasonal Streamflow, 2001-08 

1:100,000 NHD streams 
(19 HUC-8 watersheds) (85 sites) 
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SPARROW Non-Hierarchical Bayesian 
Streamflow Models (“baseline” models) 

R-Square Yield = 0.839 
RMSE = 0.34 
6 parameters 
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R-Square Yield = 0.905 
RMSE = 0.47 
14 parameters 
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R-Square Yield = 0.905 
RMSE = 0.47 
14 parameters 

Hierarchical Bayesian models explore space-time 
patterns in the model uncertainties, with 
opportunities to reduce bias and increase precision 



Bayesian SPARROW R Components 

 Hierarchical rate coefficients for 
user-specified regions (discrete) 
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Bayesian SPARROW R Components 

Regional Differences in Prediction Error 
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 Hierarchical rate coefficients for 
user-specified regions (discrete) 
 

 Hierarchical error variance for 
user-defined regions (discrete, 
continuous) 
 



Bayesian SPARROW R Components 

Validation site 

 Calibration site 

Pennsylvania 
New York 

Maryland New Jersey 

River Distance (km) Euclidian Distance (km) 

Spatial correlation evident in the process 
uncertainties among calibration station pairs 
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 Hierarchical rate coefficients for 
user-specified regions (discrete) 
 

 Hierarchical error variance for 
user-defined regions (discrete, 
continuous) 
 

 State-space option to quantify 
measurement and process 
uncertainties over space/time 
 



Bayesian SPARROW R Components 

Validation site 

 Calibration site 

Pennsylvania 
New York 

Maryland New Jersey 

Highest Accuracy for Summer 

Updated predictions that include process 
uncertainties show improved accuracy 

HUC-6 Watershed 
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Process uncertainties  
include prominent effects 
of baseflow/groundwater 

 Hierarchical rate coefficients for 
user-specified regions (discrete) 
 

 Hierarchical error variance for 
user-defined regions (discrete, 
continuous) 
 

 State-space option to quantify 
measurement and process 
uncertainties over space/time 
 



Bayesian SPARROW R Components 

 Hierarchical rate coefficients for 
user-specified regions (discrete) 
 

 Hierarchical error variance for 
user-defined regions (discrete, 
continuous) 
 

 State-space option to quantify 
measurement and process 
uncertainties over space/time 
  

 Additional model refinements 
under development: 
 

 Seasonal spatial covariance 
terms for adjacent catchments 

 Spatial smoothing of process 
errors for updated predictions 
(Kalman filtering terms) 



Use of hierarchical Bayesian methods with SPARROW: 
• Improved understanding of space-time variability in model coefficients 

and prediction uncertainties 
•Wide-ranging improvements in prediction accuracy (small to ~50%) 
•Enhanced understanding of spatial and temporal variability in 

process components 
 

• Improved understanding of large-scale RStan performance across 
variable time-space scales:  Results suggest that seasonal models of 
>~70,000 km2 and >10 yrs. will require NHD river network thinning 

 

Planned library releases of SPARROW R (GitHub, CRAN): 
•Classic SPARROW - steady state non-Bayesian version (end 2016) 
 SAS to R translation plus additional enhancements 
•Bayesian version of classic SPARROW (2017) 

Conclusions:  A Novel Use of R with SPARROW 
across Regional and Continental Scales 


