CHALLENGES IN COMBINING WATER-QUALITY DATA FROM MULTIPLE AGENCIES

Gretchen P. Oelsner¹, Lori A. Sprague², Denise M. Argue³

¹ USGS, NM Water Science Center, Albuquerque, NM
² USGS, National Water-Quality Program, Denver, CO
³ USGS, NH/VT Water Science Center, Pembroke, NH
Resources for water-quality monitoring have decreased

Leverage information from multiple monitoring networks to address regional and national water-quality issues

NAWQA Project of the National Water Quality Program
- National trends in surface-water quality

Compile publically available data from multiple sources
- NWIS
- STORET
- Federal, Regional, Tribal, State, County, Local and Volunteer

~25 million nutrient records considered
- ~322,000 sites
- ~500 agencies

Focus on nutrients but many of the same issues apply to other parameters
All data values needed to be described unambiguously with consistent fundamental metadata elements:
- Name
- Physical fraction
- Units
- Chemical form
- Remark codes
- Data entry errors

Need to have “well-mixed” data to compare across space and time.

Trend analysis is particularly sensitive to metadata issues that increase the variability in the data because it is trying to determine whether a pattern exists in the data over time.

Extra challenge given the national-scale and number of sites and sources:
- When working locally, or with a smaller number of sites, these issues are easier to resolve.
~970 unique parameter names in the combined data
 - Ammonia – 228, Orthophosphate – 206, Nitrite + nitrate – 172

Unambiguous names
 - Orthophosphate, water, filtered, milligrams per liter as phosphorus
 - Nitrate plus nitrite, water, filtered, milligrams per liter as nitrogen

Ambiguous names
 - Nutrient-nitrogen – bio-available N or Total Nitrogen?
 - Phosphate, Total phosphate, Phosphate-phosphorus
 - Orthophosphate or Total Phosphorus?
 - Total phosphorus determined by converting all forms of phosphorus to phosphate
 - Some report result as Total phosphorus or Total phosphate (lab perspective)
 - Can also be used to represent orthophosphate

POSSIBLE SOLUTIONS

- Contact agency
- In STORET, assume Phosphate-phosphorus = Total Phosphorus
<table>
<thead>
<tr>
<th>Reported Parameter Name</th>
<th>Harmonized Parameter Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic nitrogen, water, dissolved, calculated as NH3+NO2+NO3</td>
<td>Inorganic Nitrogen NH3+NO2+NO3</td>
</tr>
<tr>
<td>Inorganic nitrogen (nitrate and nitrite)</td>
<td>Nitrite + Nitrate</td>
</tr>
<tr>
<td>Inorganic nitrogen (nitrate and nitrite) as N</td>
<td>Nitrite + Nitrate</td>
</tr>
<tr>
<td>DISSOLVED INORGANIC NITROGEN</td>
<td>?</td>
</tr>
<tr>
<td>Dissolved Inorganic nitrogen as N, mg/L</td>
<td>?</td>
</tr>
<tr>
<td>Inorganic N</td>
<td>?</td>
</tr>
<tr>
<td>Inorganic Nitrogen</td>
<td>?</td>
</tr>
<tr>
<td>NITROGEN, PARTICULATE INORGANIC</td>
<td>?</td>
</tr>
<tr>
<td>Nitrogen, Inorganic</td>
<td>?</td>
</tr>
<tr>
<td>Nitrogen,Inorganic</td>
<td></td>
</tr>
<tr>
<td>Nitrogen,Inorganic</td>
<td></td>
</tr>
<tr>
<td>NitrogenInorganicTotal</td>
<td></td>
</tr>
<tr>
<td>NitrogenInorganicTotal</td>
<td></td>
</tr>
<tr>
<td>Total Inorganic Nitrogen</td>
<td>?</td>
</tr>
</tbody>
</table>
Filtration – physical process used to separate the particulate and aqueous fractions of a water sample

Both unfiltered and filtered variations on the same analyte can be determined for a given sample
- Total nitrogen and Total dissolved nitrogen

Filtered and unfiltered values for the same analyte may be very different

Not always tied to lab method

44% Unambiguous fractions

Orthophosphate Concentration in Pequea Creek at Martic Forge, PA

Provisional Data – Subject to Revision
AMBIGUOUS FRACTIONS – 56%

- Total (largest source of fraction ambiguity)
 - The inclusion of multiple species (NH3 + Organic N = total Kjeldahl nitrogen)
 - Unfiltered sample

<table>
<thead>
<tr>
<th>Unambiguous Fraction</th>
<th>Ambiguous Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Kjeldahl Nitrogen, Unfiltered</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen, Filtered</td>
<td>Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>Dissolved Total Kjeldahl Nitrogen</td>
<td></td>
</tr>
</tbody>
</table>

- Suspended (ambiguous) vs. particulate (unambiguous)

- Chemical fraction vs. physical fraction (acid soluble)

POSSIBLE SOLUTIONS

- Contact agency
- Assume fraction
 - TKN, TN, TP
 - If all fractions were dissolved or total, assume total = unfiltered
CHEMICAL FORM

- Examples:
 - as P or as PO_4
 - as N or as NO_3^-

- Does it really matter?
 - Can be a big difference in concentration
 - Not a function of analysis method – results can be converted and reported in many ways

- 30% of the nutrient data had incorrect/missing/ambiguous chemical form

- Contact agency

Provisional Data – Subject to Revision
53 agencies did not have any censored data (~2%)

- Unusual for nutrient data to not have any non-detects
- Some agencies do not report censored data
- Can indicate limited data QA

Small amount of data overall

Can change the picture (or trend) when censored data are excluded

Provisional Data – Subject to Revision
DATA ENTRY ERRORS

- **Missing units**
 - ~5% missing or incorrect units (count, CFU/100 mL, μS/cm, mg)
 - ~80% of the missing units were for censored (<) data
 - Do not want to bias data by not using censored data

- **Missing values**
 - Was the sample not analyzed?
 - Below detection limit?

- **Zero values**
 - Cannot have a 0 concentration
 - Often used to represent a non-detect

- **Negative values**
 - Below detection limit?

- **2.5% of the data, but 45% are for censored values**
 - Small amount of data, but potential to introduce bias

POSSIBLE SOLUTIONS

- For censored data, if all non-censored values were reported in one unit, assume the same unit for censored data
- If missing + zero + negative values are <1%, replace value with the closest in time censored value
Outliers vs. Typos
- Do not want to remove natural variability or include erroneous data
- >6 SD from the mean were assumed to be typos

Identifying unique sites
- Same agency uses different names for the same site
- Different site names for the same physical location

Duplicate Data
- About 20% of the data are duplicates
- Same data from 2 sources (directly from state and STORET)
- USGS data from NWIS and another agency
What does this mean for trend suitability?
TREND ANALYSIS SCREENING CRITERIA

- Orthophosphate
- Trend period 2002-2012
- Seasonal samples (quarterly)
 - First 2 years
 - Last 2 years
 - 70% of the years
- Collected at or near a gage with daily discharge
WHAT IF ALL DATA HAD METADATA?

Orthophosphate 2002-2012

471 sites
228 sites lost to metadata issues

Provisional Data – Subject to Revision
ORTHO-PHOSPHATE TREND SITES

471 sites
186 USGS
+285 other source

Data Source
- USGS
- Mixed
- Academic
- County
- Subcounty
- Regional
- Tribal

Provisional Data – Subject to Revision
Acknowledgements

- NAWQA Surface Water Trends Team
 - Lori Sprague (Coordinator/Team Lead)
 - James Falcone
 - Hank Johnson
 - Jenny Murphy
 - Gretchen Oelsner
 - Karen Ryberg
 - Ted Stets
 - Skip Vecchia
 - Bob Zuellig

- Additional Support
 - Denise Argue, Melissa Riskin, Candice Hopkins, Christine Wieben

Cement Creek and Animas River Mixing

Photo: Cox, M.H., and Schemel, L.E., 2007