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Mississippi River Valley Alluvial & Mississippi Embayment Aquifers
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MERAS Groundwater Quality – salinity



MERAS Groundwater Quality – salinity
Airborne Electromagnetic Survey



Machine-Learning Methods: Boosted Regression Trees

ensemble method - build lots of simple 
trees (weak learners)
boosting - use residual of previous tree

PROS: non-linear, non-monotonic, no 
hypothesis testing assumptions, handles 
missing data, can use many predictors

CONS: susceptible to over-fitting, can be 
harder to interpret (black box?)

Preliminary Information—Subject to Revision. Not for Citation or Distribution

Solution: find simpler models with similar 
predictive performance

Model Hyperparameters

• interaction depth (how deep to split trees)
• minimum observations per node
• learning rate (how much of previous tree to use)
• number of treesco
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Modeling 3D WQ in Mississippi Embayment
Machine learning to model and map groundwater quality

Enables groundwater quality to be placed into a groundwater-flow system context

SURFACE 
VARIABLES

GW MODEL 
VARIABLES

WELL 
GEOMETRY
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Machine Learning:
Boosted Regression Tree

Map GW WQ across 
MRVA, MCAQ, and 

LCAQ

EXPLANATORY VARIABLES (400+)

RESPONSE VARIABLES
SC, Cl, pH, redox, Mn, As



Final Prediction Framework

MRVA
(one layer)

CLBG
(6 layers)
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• Aquifer
• Depth to Screened 

Interval
• Total Screen Length
• Position in study 

area
• Confinement
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• Land Use
• Soils (phys. params)
• Soil (chemistry)
• Climate
• Recharge



https://github.com/brclark-usgs/zonepy

Well Soybeans Corn Cotton Wetlnd Crop Urban

1 92 - - - - 8

2 72 9 - 13 6 -

3 56 27 - 7 1 9

4 61 - 25 5 1 8

Surface Variable Example: Land Use/Land Cover
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GW Model Variables: GW Levels and Age

Particles added to the GW flow model  time of 
travel approximates (relative) groundwater age



Workflow – automation via Python & R
Zonepy loop thru exp. var. 
rasters and attribute all wells

Python (pandas) & R (corr) 
remove variables with linear 
correlation r2 > 0.8

R (parallel & caret)  Train models on 
YETI USGS supercomputer in parallel

Python (Glob) merge 
multiple text files into one 
attribute table (400+ variables)



Specific Conductance Models
Training Holdout

n= 1,834
r2 = 0.95 – 0.99

n= 456
r2 = 0.67 – 0.71



Specific Conductance Models
Holdout

temperature precipitation
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Pre-processing = remove linear correlated variables



Specific Conductance Models
Holdoutmodel r2 no. 

vars
int.

depth
min. 
obs.

lrn. 
rate

no. 
trees

Full, best 0.71 431 16 8 0.004 4500

Pre-
processed, 
best

0.68 225 18 8 0.006 4000

Full, 
simpler 0.69 431 6 8 0.014 3000

Pre-
processed, 
simpler

0.67 225 6 10 0.010 5000

Full, 
reduced 0.69 56 6 8 0.014 3000

Pre-
processed, 
reduced

0.67 50 6 10 0.010 5000



Position in System

GW Flow Model / Age

Soil Chemistry / 
Physical Properties

Climate

Hydrogeology

Well Geometry

Precip. Chemistry

0 5 10 15

Well Altitude

Geomorph (uplands)

GW Level (1930)

Longitude

GW Age (30th %)

Depth to Water…

Soil pH

Precip (July)

Soil Clay %

Thickness Conf. Unit

GW Age (path length)

Longitude

Soil Thorium

Temperature (July)

Distance to Fault

Precip SO4

Soil Titanum

Depth to Top of Screen

GW Flow (angle, 2010)

Relative Influence

Relative Influence of 
Explanatory Variables



Well altitude (DEM)

partial dependence plots
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Hydrogeology 
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GW path length (min) Distance to Fault



Comparing Explanatory Variables 

Specific Cond. Chloride pH

Well Altitude Longitude Altitude Top of Screen

Geomorph (uplands) GW (min path length) GW Age (minimum)

GW Level (1930) Soil Kaolinite Longitude

Longitude GW Level (1930) GW Age (30th %)

GW Age (30th %) Thickness Conf. Unit Geomorph (uplands)

Depth to Water (change) Well Altitude Soil Chemistry (Ti)

Soil pH Normalized Position Altitude Bottom of Screen

Precip (July) GW Age (90th %) Distance to Fault

Soil Clay % Soil (% fine) Normalized Position

Thickness Conf. Unit GW (max path length) Latitude



Next steps… 3D prediction

QUESTIONS?

Kathy Knierim
kknierim@usgs.gov
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