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Motivation

❖Increasing collection of high-frequency water data 

❖A common question: is water quality improving over time

❖Traditional trend estimation method 

❖Trend estimation method for high frequency data



❖ Start with seasonal-trend decomposition procedure

• Seasonal, trend and the remainder components

• Atmospheric CO2 concentration and temperature

❖ Need a universal approach to model different constituents

• Ranging from water temperature to turbidity

❖ Generalized Additive Models (GAMs)

Motivation



Study Area

15-min high frequency data

Mean daily value for trend 

estimation
Chesapeake Bay

James River at Cartersville, 

VA (02035000)

Area: 16,190 km2

The longest river in Virginia

2012 land use map

Urban: 7.5%

Ag: 16%

Forest: 73%



Generalized: many response distributions other than normal

Additive: terms add together

𝑔 𝐸 𝑦𝑖 = 𝛽0 + 𝑓1(𝑥1𝑖) +𝑓2(𝑥2𝑖) + … + ε𝑖 (1)

g is a link function

yi∼ some exponential family distribution

𝑓1, 𝑓2 … are unknown smooth functions

𝑥1, 𝑥2 … are covariates 

ε𝑖 can have random effects

Generalized Additive Model (GAM)



Smooth function (spline): sum of basis functions b

and their corresponding regression coefficients 𝛽

k: number of knots - basis dimensions used for the spline

𝑓 𝑥 = ෍

𝑗=1

𝑘

𝑏𝑗(𝑥)𝛽𝑗

𝑔 𝐸 𝑦 = 𝑋𝛽 + 𝜀 (2)

GAM Theory - Smooth Function 

The model (1) can be written in a linear way:

GAM - a generalized linear model (GLM) with linear predictor involving a 

sum of smooth functions of covariates, subject to smoothing penalties



❖ GAMs assume that residuals are identically and independently distributed (i.i.d.) 

This assumption is too strong for daily time series

❖ Time-series data: sequential time points will be highly correlated

❖ Include autoregressive moving average (ARMA) model for errors in GAM model

❖ Generalized Additive Mixed Model (GAMM): to handle residual correlation

𝑔 𝐸 𝑦 = 𝑋𝛽 + 𝐴 + 𝜀 (3)

𝑔 𝐸 𝑦 = 𝑋𝛽 + 𝜀 (2)

GAM Theory – Correlation in Data



s(nDay) is the smoothing function 

of seasonal covariate. 

s(time) is the smoothing function 

of time covariate. 

"cr": cubic spline basis

"cc": cyclic cubic spline

Adj-R2

Water Temperature ~ s(season) + s(time)

Water Temperature GAM Model



Water Temperature GAM Model

❑ Water Temperature ~ s(season) + s(time)

❑ The effect of each smooth function on water temperature
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Water Temperature GAM Model



Mean = 16.21 oC

Water Temperature – Time Series
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Water Temperature – Time Series
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Turbidity GAM Model
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❑ Log(Turbidity) ~ s(log(Q)) + s(season) + s(time)

❑ The effect of each smooth function on turbidity



Log-Turbidity - Simulation vs. Observation

Adj-R2 = 0.79

Obs Sim



Trend & CI Estimation Between Two End-points

𝑔 𝐸 𝑦 = 𝑋𝛽

Ƹ𝜂𝑝 = 𝑓 𝑡𝑖𝑚𝑒 = 𝑋𝑝 መ𝛽

Ƹ𝜂𝑝: smooth function of time component 

Xp, 𝛽 are model matrix and coefficient vector

❖ GAM model has an underlying parametric representation

❖ Derive the mean of the difference between the two endpoints 

(trend) and the standard error of this difference

❖ Conduct statistical inference using standard statistical theory

❖ Confidence interval and p-value



Water Temperature Trend Estimation

❑ Time period:  2007-01-01 ~ 2014-12-31

❑ Time period:  2007-01-01 ~ 2016-12-31

• Trend over time period: -1.27oC

95% confidence interval: -2.06 ~ -0.48

p-value: < 0.01

• Trend over time period: 0.12oC

95% confidence interval: -0.7 ~ 0.93

p-value: 0.78

2007-01-01    ~    2014-12-31

2007-01-01     ~        2016-12-31
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Turbidity Trend Estimation

❑ Time period:  2007-01-01 ~ 2014-12-31

❑ Time period:  2007-01-01 ~ 2016-12-31

• Trend (log scale): -0.24 FNU   (p < 0.01)

95% confidence interval: -0.42 ~ -0.06

• Trend (log scale): -0.10 FNU   (p = 0.30)

95% confidence interval: -0.30 ~ 0.09
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2007-01-01   ~   2014-12-31

2007-01-01            ~      2016-12-31

❑ Interpretation of the trend signal between 

estimation endpoints

• How can we utilize the variability in the 

trend time series to better understand/link 

water-quality responses to episodic 

changes in the watershed (e.g. stream 

restoration, floods, or urbanization)?



GAM Trend Estimation Summary

❖ It is flexible to incorporate many possible predictors

❖ Decompose the signal into different components over time

❖What does the trend pattern looks like over time

❖ Test if the trend is significant over a given time period 

❖ Statistical inference, confidence interval calculation

❖ Can short-term trend signals be linked to restoration/disturbance 

events in the watershed?



Thank you!
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