Salinization Trends in Water-Supply Lakes and Streams in the Triangle Area of North Carolina

Mary Giorgino
USGS South Atlantic WSC

National Water Quality Monitoring Conference
Denver, Colorado
March 2019
Since 1988, the project has tracked:

- Streamflow
- Field parameters
- Major ions
- Nutrients and TOC
- Metals
- Chlorophyll \(a\)
- Suspended sediment
- *Cryptosporidium* and *Giardia*
- Pesticides, PAHs and PCBs
- Emerging contaminants
- Cyanotoxins and T&O
Why conduct a regional comparison of temporal trends in water quality?

- Urbanization continues to increase demand for drinking water while altering hydrology, water quality, and treatment costs.
- Understanding WQ changes informs decisions about managing water resources.
- Robust, long-term datasets are available.

The USGS analyzed trends for the 25-year period 1989-2013.
21 Trend Sites

- **13 Stream sites**
 - 4 USGS only
 - 9 multiple agencies

- **8 Lake sites**
 - 4 small lakes
 - 4 in Jordan Lake
TRENDS:
POPULATION AND LAND COVER

DATA SOURCES:
StreamStats
U.S. Census Bureau
National Land Cover Datasets
Population Density by Watershed

- Increased at all sites, from 26% to 919%
- Lowest upstream from 3 small lakes
- Highest in the New Hope arm of Jordan Lake

People per square mile, 1990 and 2010
Land Cover by Watershed

- 1992 and 2011 classes aggregated into Developed, Agricultural, and Forested/Other
- Developed ↑ and Forested ↓
 - Least change in rural watersheds of 2 small lakes
 - Greatest change in two watersheds of Jordan’s New Hope arm

Percent change for aggregated land-cover categories
TRENDS: WATER-QUALITY CONCENTRATIONS

DATA SOURCES:
- NC Dept. of Environmental Quality
- Upper Cape Fear RBA
- Middle Cape Fear RBA
- USGS
QWTREND Time-Series Analysis

- Time-series trend model that accounts for daily, seasonal, and annual variations in streamflow
- Complex non-monotonic and step trends
- Accounts for serial correlation and data gaps

Points: Observed data
Line: Flow-related anomaly + trend

Developed by Skip Vecchia, USGS
Triangle Area QWTREND Models

- Multiple trend models for each Site/Constituent pair
 - Null, “no trend”
 - 1-period, 1989-2013
 - 2-period, “Early/Late” hinged at 2002
- Best-fit model selected
17 Water-Quality Constituents

- Specific conductance and major ions
- Nutrients
- Suspended sediment and solids
- Secchi and chlorophyll a

Giorgino et al., 2018, https://doi.org/10.3133/sir20185077
Regional Trend Plots

- Arrows = change from first to last year in period
 - Percent (top)
 - Concentration (bottom)
- Best-fit model
 - Single arrow: 1989-2013
 - Side-by-side arrows: 2-period, Early/Late
Salinization: Conductance Trends

- Upward trends at 17 of 21 sites
- Largest trends at 3 urban streams with treated municipal wastewater inputs
- Muted up-trends at downstream lake sites
Largest trends at 3 streams (circled)

In contrast, nutrients decreased after WRFs implemented controls.

S11, with highest rate of urbanization, had only a small upward trend in conductance
Major ions for 13 sites

- Sufficient data for all lakes and 5 streams
- Insufficient data for remaining streams
- Upward trends for Ca (shown), Mg, K, Na, and Cl
- Downward SO$_4$ trends at many sites
Summary of Regional Trends

- Population density & developed lands increased in the study area, varying widely among sites

- Specific conductance and several major ions trended upward throughout the area in response to urbanization
 - Calcium and magnesium (concrete and other carbonate building materials?)
 - Sodium and chloride (road salt?)
 - Wastewater?
Lessons Learned

- Salinization of freshwater streams and lakes is occurring in the Southeast as well as in other areas of the U.S.

- Expanded monitoring of major ions is needed to understand trends at all scales and implications
Closing Thoughts

“Is WQ getting better or worse?”

“Yes!”

- Better: "How is WQ changing over time?"
 - Drivers in flux -- population, land use, streamflow, withdrawals, inflows, WRF upgrades, BMP’s, etc.
 - Water quality responds in a non-uniform manner

- Long-term monitoring and flexible analytical approaches are critical for ensuring resiliency of water supplies for the future
Questions?

Mary Giorgino
U.S. Geological Survey
giorgino@usgs.gov
(919) 571-4087