Changing Pesticide Use: Challenges for Water Quality Monitoring and Implications

Michelle L. Hladik, Ph.D.
U.S. Geological Survey
California Water Science Center
Sacramento, CA

National Water Quality Monitoring Council Webinar
May 3, 2017
What is a Pesticide?

US EPA definition: “A pesticide is any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any PEST.”
Changing Pesticide Use

• Different Pesticides
 – New compounds
 – Changing pests/resistance
 – Restrictions/concerns on previously used compounds

• Crop types
 California: cotton → almonds

• Changes in application techniques
 Granular/Spray → seed coatings
Changing Insecticide Use

- Organophosphates (Chlorpyrifos, Diazinon)
- Pyrethroids (Bifenthrin, Permethrin)
- Neonicotinoids (Imidacloprid)

DDT 1940 - 1990
Organophosphates 1990 - 2000
Pyrethroids 2000 - 2010
Neonicotinoids
Neonicotinoids in the News

• Implicated in Colony Collapse Disorder (CCD) in honeybees (one of many factors)
• CCD (c. ~2006) worker bees abruptly disappear
• Risk to other pollinators (bumble bees, native bees, butterflies)

ARE NEONICOTINOIDs KILLING BEES?

It's no longer a mystery. We know what's killing the bees.

They're being poisoned by neonicotinoid insecticides

Look at all the pretty flowers...

Bee declines driven by combined stress from parasites, pesticides, and lack of flowers

Dave Goulson,* Elizabeth Nicholls, Cristina Botías, Ellen L. Rotheray

Tell the EPA to Ban Neonicotinoids Before They Devastate the U.S.

Facebook.com/organicconsumers

Stop the Mass Death of Bees

Support the Campaign for a total ban of Neonicotinoid Pesticides

www.CBCnetwork.org

USGS
Why are Neonics Popular?

• Most widely used insecticides in the world
 – Home use: Pets (topical), lawn and garden
 – Agricultural use: granular, foliar spray, seed treatment

• Similar to nicotine, neurotoxic to insects

• Active against a broad spectrum of insects

• Less toxic to vertebrates (mammals)
Neonicotinoids and Seed Treatment

- Systemic pesticides (taken up by plant)
- Can “target” application (precision agriculture)
- 2000 - clothianidin and thiamethoxam enter market; seed treatments become more common
- Nearly all corn and 1/3 of soybeans planted today use a neonicotinoid (plus one to five fungicides)
Environmental Fate

- Water soluble
- Ability to be mobile and persistent (~10% taken up by plants in seed coatings)
Changing Environmental Fate

1990 - Organophosphates
2000 - Pyrethroids
2010 - Neonicotinoids

USGS
Neonicotinoid Use in U.S.

Estimated Agricultural Use for Imidacloprid, 2014 (Preliminary)

https://water.usgs.gov/nawqa/pnsp/usage/maps/
Neonicotinoids Detected in Iowa Surface Waters - 2013

- Targeted location (Iowa) where use of neonics for seed treatment is high (corn, soybeans)
- Neonics detected frequently
- Highest frequency and concentrations during planting

Hladik et al., 2014, *Environ. Pollut.*, v. 193, 189-196
Neonicotinoid Transport
Planting and Hydrologic Events

Hladik et al., 2014, *Environ. Pollut.*, v. 193, 189-196

- Classic “spring flush” phenomena as herbicides (atrazine)
- associated with planting (seed treatments)
Nationwide Study

38 streams, one time sampling

Neonic Detection Frequency
1 or more 53%
2 or more 26%
3 or more 11%
5 or more 3%

Relation to Landcover
Clothianidin + row crops
Thiamethoxam + row
Imidacloprid + urban

Nationwide Study 2012-2014

- Site sampling varied in timing
- One Central California site had five neonics detected

Overall Detection Frequency

- Imidacloprid
- Clothianidin
- Thiamethoxam
- Dinotefuran
- Acetamiprid

Urban (n = 160)
Agriculture (n = 216)
Changing Toxicity

- Organophosphates
- Pyrethroids
- Neonicotinoids

Timeline:
- 1990
- 2000
- 2010
Neonicotinoid Toxicity

- EPA acute invertebrate aquatic life benchmarks 11000-35000 ng/L;
 2017 preliminary risk assessment of imidacloprid - 650 ng/L (acute) and 10 ng/L (chronic)
- Does not show “total neonic” toxicity
Neonics in U.S. Waterways

- Dissolve in water
- Can move away from application area
- Affect aquatic insects (mayflies, caddis flies)
- Indirect effects on birds
Direct vs Indirect Effects

- **Direct effects**
 - Acute toxicity to birds is lower than pesticides replaced; varies by species
 - One treated seed (corn, wheat, canola) can poison a bird
 - $1/10^{th}$ of a corn seed/day during egg-laying season can affect reproduction

- **Indirect effects**
 - Enter aquatic systems
 - Affect invertebrates/insects (esp. mayflies, caddisflies, midges)
 - No food for insectivorous birds
 - Hard to determine
Getting Attention
Charismatic Megafauna

Species People Care About

Less “Charismatic”
Indirect Effects

- **Birds (Netherlands)**
 - Correlated imidacloprid concentrations in surface water with reduced bird populations
 - 6 of 15 bird species in decline

- **Butterflies (California)**
 - Correlated neonicotinoid use with decreasing populations
 - More severe for smaller butterflies

- **Does not include causation**
Neonic Use Update

• Seed treatments use less active ingredient than broadcast applications, but near 100% usage on seeds means more total use.

• EPA study: soybean fields with treated seeds did not see increased yield, much use is prophylactic.
 – Seed treatments lead to less foliar applications in oilseed rape in England (Budget et al 2015)
 – Seed treatments no increase in sunflower yields in South Dakota (Bredeson and Lundgren, 2015)

• Neonics being phased out in US wildlife refuges

• EPA is currently reviewing neonics

• EU moratorium on agricultural use of 3 neonics since 2013

• Ontario, Canada cutting neonic use by 80% over 3 years

• Maryland banned consumer use of neonics (January 1, 2018)
Other Projects

- Neonics detected in drinking and tap water; low levels not required to be tested (University of Iowa) Klarich et al., 2017, Environ. Sci. Technol. Lett.

- Occurrence in Great Lakes tributaries

Summary

• Neonics frequently detected in streams across U.S.
 – Can exceed chronic and even acute levels
 – Most likely effects are on invertebrates

• Transport to streams driven by use and precipitation
 – Contributions from both urban and ag use
 – Many ag areas use seed treatment

• Seed treatments are increasing overall neonic use (and insecticide use) across the U.S., ~100% of corn is treated, new treatments for wheat, rice

• Occur in complex mixtures of pesticides (herbicides, fungicides) and other contaminants (pharmaceuticals, metals, microplastics)