Introduction to environmental DNA (eDNA)

National Water Quality Monitoring Council
Webinar 18

April, 2017

Chris Merkes
Geneticist - USGS
Upper Midwest Environmental Sciences Center
cmerkes@usgs.gov
What is environmental DNA (eDNA)?

- All living things have DNA
- eDNA is DNA released from an organism into the environment
- Arises from sloughed cells
 - Skin, hair, scales, etc.
 - Intestinal tract
 - Sperm, eggs
 - Remnants
What is Environmental DNA (eDNA)?

- Potential for nuclear DNA or RNA, but most frequently use mitochondrial DNA
- Mitochondrial DNA is more stable in the environment
- Many copies of mtDNA in each cell
- Mitochondrial genome is short, so sequences are known for most organisms

https://ajweinmann.wordpress.com/organelle/
How do we analyze eDNA?

- Collect
- Concentrate
- Extract
- Amplify
- Detect
How do we detect DNA from one organism and not others?

Quantitative Polymerase Chain Reaction (qPCR)

If the primer sequence matches, the DNA will be copied.
How do we detect DNA from one organism and not others?

Quantitative Polymerase Chain Reaction (qPCR)

If the primer sequence does not match, the DNA will not be copied.

DNA of NON-Target Organism
How do we detect DNA from one organism and not others?

Quantitative Polymerase Chain Reaction (qPCR)

DNA of Target Organism

Primer

Fluorophore

Quenchers

Probe

Fluorophore will be released if probe sequence matches
How do we detect DNA from one organism and not others?

Fluorescent signal will only be detected if Primer sequence matches AND Probe sequence matches.

Quantitative Polymerase Chain Reaction (qPCR)
The History of eDNA

- Microbiologists first used eDNA techniques to identify microbes in soil and water in 1990’s
 - Identify toxic algal blooms
 - Identify fecal contamination in water supplies
 - Identify pathogens in the environment
 - Characterize microbiomes

Photo Credit: Fabling cabin fevers blog
The History of eDNA

Molecular Ecology (2003) 12, 1660–1667
doi: 10.1046/j.1365-294X.2003.01823.x

SHORT COMMUNICATION
Genetic marker investigation of the source and impact of predation on a highly endangered species

SAM C. BANKS,* ALAN HORSUP,† ALAN N. WILTON‡ and ANDREA C. TAYLOR*
*School of Biological Sciences, PO Box 18, Monash University, Clayton, Victoria, 3800, Australia, †Queensland Parks and Wildlife Service, PO Box 2320, Redbank Plains, Queensland, 4165, Australia, ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2057, Australia

Molecular Ecology Resources (2008) 8, 561–567
doi: 10.1111/j.1755-0998.2007.02344.x

TECHNICAL ADVANCES
Optimizing the use of shed feathers for genetic analysis

FIONA E. HOGAN,* KEAYLENE COOKE,* CHRISTOPHER P. BURREIDGE* and JANETTE A. NORMAN†
*School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy Burwood, Victoria 3125, Australia, †Population & Evolutionary Genetics Unit, Science Department, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia

BMC Genetics

Research article
Genetic characterisation of farmed rainbow trout in Norway: intra- and inter-strain variation reveals potential for identification of escapees
Kevin A Glover

Address: Institute of Marine Research, PO Box 1870, Nordnes, N-5817 Bergen, Norway
Email: Kevin.Glover@imr.no

USGS
The History of eDNA

Species detection using environmental DNA from water samples

Gentile Francesco Ficetola1,2,*, Claude Miaud2, François Pompanon1 and Pierre Taberlet1

1Laboratoire d’Ecologie Alpine, CNRS-UMR 5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France
2Laboratoires d’Ecologie Alpine, CNRS-UMR 5553, Université de Savoie, 73376 Le Bourget du Lac Cedex, France
*Author and address for correspondence: Dipartimento di Scienze dell’Ambiente e del Territorio, Università Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy (francesco.ficetola@unimi.it).

“Sight-unseen” detection of rare aquatic species using environmental DNA

Christopher L. Jerde1, Andrew R. Mahon1, W. Lindsay Chadderton2, & David M. Lodge1

1 Center for Aquatic Conservation, Department of Biological Sciences, University of Notre Dame
2 Great Lakes Project, The Nature Conservancy

Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum)

Caren S. Goldberg1,3, Adam Sepulveda2,4, Andrew Ray2,5, Jeremy Baumgardt1,6, and Lisette P. Waits1,7

1 Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho 83844-1136 USA
2 US Geological Survey Northern Rocky Mountain Science Center, Bozeman, Montana 59715 USA
Publishing on eDNA

Search Results for Articles Published with (environmental + DNA)
Uses of eDNA analysis

- Detecting rare, cryptic, or elusive species
- Detect migration or spawning behavior
- Monitor species abundance changes in time
- Determine species assemblages
- Evaluate management action
- Archive records
Detecting Rare, Cryptic, or Elusive Species

- Monitoring invasion fronts for early detection to allow rapid response
- Surveying for endangered species
- DNA evidence can’t flee or hide

Partial list of species being studied with eDNA:

- American Bullfrog
- Asian Carp
- Black Warrior Water Dog
- Bluegill
- Brook Trout
- Burmese Python
- Common Carp
- Dreissenid Mussels
- Eastern Hellbender
- Feral Swine
- Flattened Musk Turtle
- Golden Tree Frog
- Great Crested Newt
- Hines Emerald Dragonfly
- Idaho Giant Salamander
- Microcystis
- New Zealand Mudsnaill
- Northern Pike
- Round Goby
- Rudd
- Rusty Crayfish
- Sea Lamprey
- Sturgeon
- Spectaclecase Mussel
- Swollen River Mussel
- Walleye
- Waterfleas
- Water Soldier
- Winged Maple Leaf Mussel
- ... and many more
Even the most Cryptic and Elusive Species

LOCH TEST MONSTER Scientists to test water of Loch Ness for DNA to find out once and for all if Nessie is real

Professor Neil Gemmell will gather water samples and analyse them using the same techniques as police forensic teams

NOTE: The USGS does not acknowledge or deny the existence of the Loch Ness Monster. This is NOT a USGS research project.
A Caveat to eDNA Detection of Rare Species

Persistence of Environmental DNA in Freshwater Ecosystems

Tony Dejean¹,²,³, Alice Valentini¹,², Antoine Duparc², Stéphanie Pellier-Cuit⁴, François Pompanon⁴, Pierre Taberlet⁴, Claude Miaud²*

¹ SPYGEN, Savoie Technolac - BP 274, Le Bourget-du-Lac, France, ² Laboratoire d’Ecologie Alpine, UMR CNRS 5553, Université de Savoie, Le Bourget-du-Lac, France, ³ Parc Naturel Régional Périgord-Limousin, La Coquille, France, ⁴ Laboratoire d’Ecologie Alpine, UMR CNRS 5553, Université Grenoble I, Grenoble, France

Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data

Christopher M. Merkes¹,²*, S. Grace McCalla², Nathan R. Jensen², Mark P. Gaikowski², Jon J. Amberg²

¹ IAP Worldwide Services Inc., Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America, ² United States Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
Early Detection of Invasive Species

Samples collected: 26-March, 2014

Original Infestation Discovered, 2013

New Zealand Mudsnaill in Wisconsin
Early Detection of Invasive Species

New Zealand Mudsnails in Wisconsin

- Tested 46 other sites
- New Zealand Mudsnails were not detected outside BEC
- After this study, WI DNR has also discovered NZMS in Badger Creek

Merkes and others, 2015
Detect Migration or Spawning Behavior

DNA Concentration versus Migrating Bigheaded Carp

Erickson and others, 2016
Detect Migration or Spawning Behavior

- Manage timing for opening and closing barriers
- Disrupt spawning behavior for invasive species
- Limit use during spawning for endangered species
- Trigger control action

Gilbert, 2012
Monitor Abundance Changes Over Time

DNA released into the environment versus bigheaded carp biomass

Klymus and others, 2014
Monitor Abundance Changes Over Time

eDNA Concentration = DNA released – DNA degraded

Some factors that could affect shedding and degradation rates:

- pH
- Temperature
- Food availability
- Season
- Turbidity
- UV exposure
Determine Species Assemblages

DNA barcoding: Species identification from short DNA sequences
Evaluate Management Action

Controlling Invasive Species

Restoring Natural Habitat

In both cases, eDNA can be used to evaluate success.
Archive Records

- eDNA samples can be tested for many species
- Multiple tests can be done on the same samples
- Species of concern today may not be the same in the future
- Samples can be archived frozen or dried
- Archived samples can be reanalyzed years later
Next Steps

Instead of spending countless hours doing this…

Develop molecular methods and computer automation to analyze high throughput sequencing
Next Steps

eDNA Concentration = DNA released – DNA degraded

Some factors that could affect shedding and degradation rates:

- pH
- Temperature
- Food availability
- Season
- Turbidity
- UV exposure

Refine the formula for better estimates
Next Steps

More automation for active monitoring and long-term data generation
Next Steps

Enable Citizen Science

#portableDNAamplifire
Acknowledgements

UMESC Molecular Group:
Jon Amberg
S. Grace McCalla
Craig Jackson
Theresa Schreier
Nick Schloesser
Yer Lor
Matt Hoogland
Stacie Kageyama
Tariq Tajjioui

Partners and Funding Sources:
Wisconsin DNR
Minnesota DNR
Ohio DNR
Michigan DNR
Illinois DNR
Indiana DNR
Purdue University
University of Wisconsin – Stevens Point
University of Wisconsin – La Crosse
Lucigen Corporation
LGC Douglas Scientific

Great Lakes Restoration Initiative
Great Lakes Fisheries Commission
Legislative Citizen-Commission on Minnesota Resources
Thank You

Chris Merkes
cmerkes@usgs.gov
https://www.usgs.gov/staff-profiles/chris-m-merkes