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Harmful Algal Blooms (HABs)
A harmful algal bloom is an aggregation 

or accumulation of either toxic or  
non-toxic, micro- or macroalgae that 

causes harm due to:
• production & trophic transfer of highly 

potent toxins
• accumulation of high biomass levels
• physical effects of cells on  susceptible 

organisms



Diversity of HAB Species & Toxins
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Complex interactions between external & internal 

environmental/ecological factors control growth, 

accumulation, toxicity & fate of freshwater (marine) HABs

H. Paerl (2018) Toxins 10:76



HAB monitoring, management & research    
in marine and freshwater systems requires 

near-real time, in-situ observations
 early warning of HAB development and toxin 

production in support of management decisions

 regulatory applications mandated to ensure water 
is safe for drinking and recreational activities

 near-real time data for assimilation into models 
for HAB forecasting & long-term trends

 assess HAB growth/toxicity for ecophysiological
studies to ID environmental drivers/predictors



Why is it important to design sensors to 
detect both HAB species and toxins?

For HAB management & mitigation, it is critical to detect 
organisms and toxins due to fluctuations in toxicity caused 

by a changing (marine/freshwater) environment -
high cell numbers don’t always mean high toxin levels
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 “being there” - autonomous sample acquisition & processing

 in-situ application of molecular probe technology

 extended, unattended offshore operations – “always on”

 tools for data visualization & decision support

The Vision: in late 1990s, NOAA/NCCOS partnered with 
MBARI to develop technology enabling the autonomous,   

in-situ detection of HAB species & toxins

adapted from C. Scholin

The Environmental Sample Processor (ESP),       
centerpiece of NCCOS’ HAB sensor development effort, 

aimed to address several long-standing challenges 
fundamental to effective HAB management & research



2G ESP

1G ESP

3G ESP-LRAUV

Autonomous, underwater detection of HABs with the ESP…     
when you can’t actually be there!

SMART-
SRAUV



Sensor development - Stage 1: 1G & 2G            
Environmental Sample Processor –

autonomous, in-situ HAB spp/toxin detection



Current Capabilities of 2G ESP
 Real-time application of DNA probe 

arrays (SHA); algae, bacteria, inverts

 Real-time application of protein/Ab 
arrays (cELISA); phycotoxins

 Sample archival
 whole cell microscopy/FISH

 nucleic acids (gene libraries)

 phycotoxins

 Real-time application of quantitative 
PCR (qPCR); various target genes

 Two-way communications

 Mfg by McLane Research Laboratories

~0.5 m

~1
 m

 

2G ESP instrument located at 
NOAA/NCCOS Laboratory



• competitive (c) ELISA membrane-based array 

employs toxin-protein (OVA) spots for detection

• α-toxin antibody (monoclonal or polyclonal) is 

selected based on target affinity and cross-

reactivity among toxin variants or congeners

• ‘in-assay’ detection limit in low ng/mL range

Developing an Array-based cELISA
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free antibody and that bound to toxin 
in the sample extract are washed away, 
leaving only antibody bound to the  
immobilized toxin-protein conjugate
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Toxin Detection Strategy: cELISA

chemiluminescent signal is imaged using 
a CCD camera; data transmitted and/or 
stored on board ESP; assay time ~1 hour

low 
toxin

high 
toxin



Detection and quantification limits

(in water concentrations based on 1L sample; PNW pDA alert level ~200 ng/L)

EC50 = 78 ng/L 

ULOQ = 1240 ng/L

LLOQ = 4.9 ng/L

LLOD = 2.6 ng/L
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Web Portal for ESP data access

HAB array image

Select source & type of 
data to display

Depth recording from 
CTD on ESPbruce

Select HAB or toxin 
array image to display



Web Portal for ESP data access

DA array image

slack.com
• desktop or smartphone app

• 24/7 communications with team 
members before, during, and 
after ESP deployments

• real-time, remote  access to 
review ESP operations & array 
images



Many 2G ESP HAB-Related Applications in US 
Coastal Waters & Great Lakes

many deployments – MB, S. CA many deployments - Gulf of ME

4 deployments - WA coast
3 deployments – near Toledo 

water intake (L. Erie)



2G ESP deployments in the PNW: P-n. transport 
path from Juan de Fuca Eddy to coast

Credit: J. Mickett & S. Moore



R/V Tommy Thompson

ESPfriday deployment

telebuoy

Credit: S. Moore











ESP offshore toxicity



Sensor development - stage 2: ‘Smart’-
SRAUV intelligent HAB tracking/sampling

HAB growth and toxicity, and thus their 

potential impact, change continuously over 

time and space…so instead of a stationary 

instrument (e.g., 2G ESP), wouldn’t it be 

cool if we could actually track a bloom

and intelligently/adaptively sample the 

population & water mass



CANON: Controlled, Agile, Novel Observing Network: 
uses multiple platforms to track & sample HABs

Phase 2: Patch selection

Phase 3: Patch Tracking

Phase 4: Targeted/intelligent sample 
collection (time series of patch)

Phase 1: Bloom reconnaissance

Phase 5: Analysis 
(laboratory-based; 
‘human-in-the-loop’)



The ‘Robot Ballet’…

Dorado: ’smart’ short range (24 hrs) AUV with 
‘gulpers’ for intelligent sampling of microorganisms

Tethys: long range 
(10 days) AUV for 
bloom patch mapping



What can we learn from this new approach?

adaptive/intelligent AUV-based sampling provides a ‘3-D picture’ of 
phytoplankton assemblage & water column structure over time;    

shows changes in Pseudo-n. and pDA conc. (bloom toxicity)

J.P. Ryan et al. (2014) DSR II

high cellular 
toxicity        

(hi DA/lo P-n)



ESP on moorings, 
drifters, 
benthic  

installations for 
autonomous detect.

Sensor development – stage 3:  3G ESP-LRAUV     
autonomous detection + mobility/tracking

patch tracking   
& intelligent 
sampling for 
molecular 
analyses

+

3G ESP-LRAUV

ESP integrated with Tethys-class 
long-range AUV (LRAUV)
• synergism of ESP sampling/ 
processing technology & LRAUV 
mobility and ‘smarts’

• flexible repertoire of analytical 
modules (SPR, dPCR)

=



3G ESP/Long-Range AUV

28” Extension

119” Vehicle

Mission Duration: 3 weeks/1800 km



Re-engineering the 2G ESP = 3G ESP-LRAUV

3G ESP Long-Range AUV
Mission Duration: 3 weeks/1800 km

1st test flight – Nov 2014 
Monterey Bay, CA

 first MOBILE, long-range 
AUV-based HAB spp. and toxin 
detection

 adaptive, intelligent tracking & 
sampling of target features

 novel, self-contained sample 
prep cartridge & miniature 
toxin sensor chips

 all results transmitted in near-
real time

 deployed in marine and 
freshwater (in 2018) systemsLyse-&-Go

SPR chips



3G ESP-LRAUV Prototype: The Deployments

Credit: J. Birch



3G ESP: showing off its ‘smarts’!

Chl peak layer 
sampling

below-layer 
sampling for 
comparison

 multiple 3G prototype flights in 
Monterey Bay, CA since Nov. 2014

 3 Feb mission demonstrates ability 
to locate/sample near Chl peak

 MILESTONE: first autonomous, 
end-to-end SPR-based domoic acid 
measurement on 3G ESP-LRAUV

Image credit: Y. Zhang

3G ESP SPR-based MCY – full 60-cartridge field 

test planned for late summer 2018 in Lake Erie

DA lysate & 
SPR analysis



Emerging Role of Observing Systems in HAB  
Detection & Forecasting – Many Challenges! 

a bird’s eye view of all 
observing ‘assets’ deployed 
in Monterey Bay, CA     
‘Bloom Ex’ experiment…
a bowl of spaghetti!!

©MBARI



Emerging Role of Observing Systems in HAB 
Detection & Forecasting – Many Challenges! 

Asset planning, deployment, 
and coordination

Data acquisition, analysis, and assimilation into models



Emerging Role of Observing Systems in HAB 
Detection & Forecasting: GLERL-ReCON Network

Aim to leverage existing and 
emerging observing network 
infrastructure for locating  
CHAB-specific platforms

 integrate real-time physico-
chemical data & CHAB-specific 
(cells/toxins) measurements

 early warning of CHAB events & 
understanding of environmental 
drivers of bloom growth/toxicity

 support for CHAB forecasts

Cont. Monitoring:  SRP, T, C, CHL, PC, PE, Turbidity, CDOM, pH, DO

*
*

*

*



Emerging Role of Observing Systems in HAB  
Detection & Forecasting – NOAA HAB OFS

• provide user-friendly data tools & 
accurate forecasts to resource 
managers (fisheries, drinking/ 
recreational water)

• support timely decision making to 
protect public health, coastal 
resources, ecosystem services, and 
local economies

• assimilate data streams from 
autonomous, in-situ sensors into 
predictive models for forecasting 
bloom biomass, trajectory, toxicity



What will the future look like &      
what are some of our new challenges?

 Imagining the next steps

• smaller, better, faster, cheaper, 
easier to manufacture

 Adopting interface standards

• ‘plug-and-play’ modular sampling 
and analytical modules

 Exporting the technology

• transitioning research to 
application & operations

• enabling others to address 
diverse questions

Adapted from C. Scholin



MBARI & NCCOS ESP TEAM
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