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Abstract: The Curve Number (CN) method for estimating direct runoff from storm 
rainfall developed in the 1950’s by the then USDA Soil Conservation Service has been 
adopted by large groups of users across the world. This has helped to gradually highlight 
its strengths and weaknesses. Recently users have identified the need for locally defined 
CN values to address concerns with regional and seasonal variations. We determined CN 
values from rainfall-runoff data gathered from 126 storms between 1976 - 2009 on a 2.7 
ha instrumented catchment (P1), managed under no-till at the USDA-ARS research 
station in Watkinsville, GA. Summer crops included soybean, sorghum, millet, cotton 
and corn, with barley, wheat, crimson clover and rye as cover crops. Mean and median 
CN values were 36 and 31, respectively.  In contrast, CN values from standard Tables for 
the conditions at P1 are approximately 60 to 70, indicating an expectation of greater 
runoff than was measured. On average, 6.5% of the rainfall was partitioned to runoff. 
Half of the events partitioned <1% to runoff. Hence, CN estimates for a historically 
eroded watershed under long-term no-till management proved similar to those of a 
pasture or meadow in good hydrologic condition. A proposed change to improve the CN 
method is to replace the current initial abstraction ratio (λ) value of 0.2 with 0.05. The 
median λ value in our study was 0.04 which is in close agreement with the proposed 
value. Future work will examine the variability of the CN values with season, crops, prior 
rainfall, and weather conditions and across time.  
 

INTRODUCTION 
 
In the 1950s, hydrologists at the then USDA Soil Conservation Service (SCS), after 
empirical analysis of large amounts of rainfall and runoff data from small catchments and 
hill-slope plots, developed the SCS Curve Number methodology for estimating event 
runoff from event rainfall with a minimal data set (Hawkins et al., 2009). The SI unit 
equivalent of the derived equation is:  
 

  Q = (P- Ia)2 / (P- Ia +S) for P>Ia; Q=0 for P≤Ia;                     (1) 
 

CN = 25400 / [254+S]                        (2) 
 
Where Q is runoff (mm), P is rainfall (mm), Ia is the initial abstraction (mm) and equals 
to λS, with the ratio λ set at 0.2, and S is the potential maximum retention (mm).  
 
Land use, conservation practice, hydrologic condition of soil cover, hydrologic soil 
group, and antecedent moisture conditions (AMC- now called antecedent rainfall 
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condition ARC) were used to estimate CN values from tables. Graphical charts were then 
used to enter P and CN to obtain Q. To develop CN from measured data one would solve 
Eq. 1 for S knowing P and Q (Hjelmfelt et al., 1982), or knowing P, Q and Ia, which 
equals the amount of rainfall at the start of runoff. With S determined, Eq. 2 can be used 
to solve for CN. This simple empirical model continues to be used today across the world 
and is a vital component of many popular hydrologic models in current use. Hawkins et 
al. (2009) have summarized the origin, development, role, application and current status 
of the CN method, and cite studies by several researchers and task forces working to 
improve the method by incorporating knowledge developed since the original 
formulation. Some inconsistencies, limitations and problems have been identified.    

 
The CN method has had its fair share of critiques, notably related to the rather rigid use 
of the value 0.2 for the initial abstraction ratio λ. Research data across regions indicates a 
much smaller 0.05 value as more appropriate. The soil hydrologic classes can be 
expanded to include data bases that have been developed since the original formulation. 
In addition, there might have been bias in the original development from working with 
larger storms since the model appears not to work well for small storm events, which 
most storms are. The method shows variance with infiltration-based analysis and the role 
of prior rain is not clear. Sometimes, additional data have shown the CN equation to be at 
variance with patterns of observed rainfall-runoff. The model is also more sensitive to 
CN than rainfall depth. While measurement and analysis of rainfall and its characteristics 
abound (for example locally, regionally), ground truth data for CN are lacking. Concerns 
with regional and seasonal variation in CN have raised calls for the development of 
locally defined CN. 

 
Our objective in this study was to derive and analyze CN values from rainfall-runoff data 
gathered from 1976 to 2009 on a 2.7 ha catchment (P1) at the USDA-ARS research 
station in Watkinsville, GA, in the Georgia Piedmont. During this period P1 has 
continuously been under no-till management. A summary of the cropping history is given 
in Table 1, and Figure 1 shows the soil and topographic layout. We hypothesize that even 
with such a small single catchment with unchanging topography, and perhaps soil 
textural characteristics, curve numbers will show much variability due to the variation in 
storm characteristics, seasonal weather and management patterns, cover as well as soil 
water conditions.   
 

MATERIALS AND METHODS 
 
Catchment: The research catchment P1 was established during the spring and summer of 
1972 on 2.7 ha at the USDA-ARS J. Phil Campbell Senior, Natural Resource 
Conservation Center, Watkinsville, GA (83o 24' W longitude and 33o 54' N latitude).  
Slopes range from 2 to 7 percent. The catchment consists of three soil types: a gravely 
Cecil sandy loam (clayey, kaolinitic thermic Typic Kanhapludults) with 2 to 6 percent 
slopes is dominant; a similar soil but with thinner solum, a gravelly Pacolet sandy loam, 
occurs on a smaller area on the 5 to 7 percent slopes; and a Starr sandy loam occupies the 
lower portion of the catchment on 2 to 4 percent slopes.  
 

2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010



Table 1 Summary of cropping history at P1. 
 

 
Year 

 
Tillage 

Spring-Summer Fall-Winter 
      Crop Years Crop Years 

      
1972-1974 Conventional Soybean 3 Fallow 2 
    Barley 1 
      
1975-2009 No-till Soybean 12 Barley 6 
  Grain Sorghum 12 Wheat 8 
  Forage sorghum 3 Clover 11 
  Cotton 5 Rye 9 
  Corn 2   
  Pearl millet 1   
Total years Conventional 3  3 

No-till 35  34 
 
 

 
Figure 1 P1 Catchment showing soil distribution and elevation contours. 

 
Research started at P1 in 1972 to evaluate sediment and herbicide transport in runoff 
from a Piedmont watershed. The study was conducted cooperatively between the USDA-
Agricultural Research Service and Environmental Protection Agency (Smith et al., 1978). 
As shown in Table 1, after 3 conventionally-tilled soybean crops, management converted 
to conservation cropping systems consisting of double-crop conservation tillage (no-till) 
rotations which have been maintained ever since (Langdale and Leonard, 1983; Endale et 
al., 2000). A gully formed during the conventional tillage phase on the lower part of the 
catchment which was renovated by establishing an 11-m wide (0.32 ha) fescue (Festuca 
arundinacea Schreb.) grassed waterway in October 1974 (Langdale et al., 1979). The 
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grassed waterway was converted back to the crop rotation during the summer of 1997 
because of negligible soil losses from the catchment arising over the long conservation 
tillage history.    
 
Hydrology: Until 1998, rainfall was gauged with a chart-based Fergusson-type weighing 
and recording rain gauge while flow was measured with a 0.762 m (2.5 ft) stainless steel 
H-flume of USDA specification (Brakensiek et al., 1979) located at the outlet and fitted 
with a chart-based Friez-type Fw-1 water-level recorder. Charts were manually processed 
to quantify and archive rainfall and runoff amounts. Beginning in 1998 the rainfall-runoff 
monitoring system was upgraded and automated. Rainfall was measured with a Texas 
Electronics Inc. (Dallas, Texas) TR525M tipping bucket rain gauge. Flow depth was 
measured with a Druck (New Fairfield, CT) submersible pressure transducer suspended 
in the stilling well of the flume. The rain gauge and transducer were connected to a 
Campbell Scientific Inc. (Logan, UT) CR10X data logger to process and save 5-min 
cumulative rainfall (mm) and runoff amounts (liters) in the data logger memory for 
downloading to a computer through a phone line or manually on to a storage module. The 
data logger was programmed to convert the transducer flow depth values into runoff rates 
using the standard flume calibration curve (Bos, 1978). In March 2006 the transducer-
based water flow sensing was changed to one based on a Shaft Encoder (Campbell 
Scientific Inc.) because of occasional instability of the transducer. 
  
Endale et al. (2000) have summarized 26-years (1972-1998) of runoff and sediment data 
from P1 that show impacts of the contrasting cropping systems on long-term runoff and 
sediment losses and residue production. The major conclusions after 26 years were: 

• Double cropped conservation cropping system following conventional tillage 
cropping immediately reduced runoff and soil erosion. 

• Conservation cropping system was essential to successfully combat accelerated 
erosive effects of high-energy storms following conventional tillage. 

• Residue of 9.9 Mg ha-1 yr-1 was produced over 20 years under conservation 
cropping systems. The residue modified surface soil properties that allowed more 
infiltration and therefore less runoff.  Residue production did not exceed 2 Mg ha-

1 yr-1 under conventional tillage system.                             
 
Curve Number Investigations: Rainfall and runoff data were compiled for CN analysis 
beginning in 1976, one year into conservation tillage management. The 1976-1990 data 
were already available in a spreadsheet after staff had digitized the charts. The 1991-1998 
data came from current staff digitizing the charts which had been kept intact. From 1999 
on the data were obtained from the data logger of the automated system. By going 
through rainfall-runoff graphs, 126 events were identified for analysis. Runoff varied 
from as little as 0.071 to as large as 1410 cubic meters. All runoff data except those that 
could not be quantified or could not be matched with the corresponding rainfall due to 
instrument, recording, processing, or some other error were included in the analysis. A 
common criticism of past CN evaluations has been that there was bias toward selecting 
larger storm events. The initial step was to chronologically tabulate by columns the 
selected events and enter details such as rainfall amount, start and end of rain times, the 
runoff start, peak and end times, and runoff amount in liters. Runoff expressed as depth 
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was tabulated next by dividing volumetric runoff by the catchment area. For each event 
the rainfall amount up to the start of runoff was determined next representing the initial 
abstraction (Ia; Eq. 1). At this point, Q, P and Ia of Eq. 1 are known leaving S as the only 
unknown. The equation is solved for S and the results tabulated. Curve Numbers are then 
calculated using Eq. 2. Descriptive statistics were determined and graphs developed next.  
 

RESULTS AND DISCUSSIONS 
 
Descriptive statistics for considered parameters are given in Table 2. As expected, the 
standard deviations for all parameters were high indicating large variability. Values in 
Table 2 indicate a highly skewed distribution for runoff, percent runoff, peak flow, the 
retention parameter S and the initial abstraction ratio λ. As previously reported (Endale et 
al., 2000), no-till management of P1 continues to significantly limit runoff compared to 
when the catchment was managed under conventional tillage.  

 
Table 2 Descriptive statistics for parameters in Curve Number analysis. 

 
Rainfall Runoff Peak Initial Retention Initial Curve

P Q flow Q/P abstraction Ia S abstraction Number

Statistics mm mm L/s % mm mm  ratio λ CN

Mean 55.3 4.8 23.6 6.5 27.7 9604 0.15 36.3
Standard Error 2.7 0.8 4.4 1.0 1.8 2742 0.02 2.8
Median 46.9 0.3 1.9 0.6 24.0 577 0.04 30.6
Standard Deviation 30.8 9.4 49.2 11.0 19.8 30778 0.23 31.0
Minimum 10.4 0.0 0.0 0.0 0.1 15 0.00 0.1
Maximum 166.7 52.2 262.0 46.0 91.0 238436 0.97 94.3
Count 126 126 126 126 126 126 126 126
Confidence Level(95.0%) 5.42 1.65 8.7 1.94 3.50 5427 0.04 5.5  

 
Despite a mean percent runoff of 6.5, partitioning of the rainfall into runoff was <1% in 
50% of the events. Few large runoff events have skewed the mean. There was a 5% 
probability of exceeding a 35% Q/P ratio, and a 20% probability of exceeding a 10% 
ratio. The runoff partitioning on an annual rainfall basis is much smaller. Piedmont 
landscapes are prone to serious runoff problems when disturbed by tillage and left 
without proper cover. In a 1940-1959 study of conventionally tilled continuous cotton on 
plots close to P1, Hendrickson et al. (1963) found that about 21% of the 1250 mm yr-1 of 
rainfall was partitioned into runoff. Endale et al. (2000) reported that runoff at P1 during 
the initial 2.5 years of conventional tillage practice averaged 180.4 mm yr-1 compared to 
22.9 mm yr-1 during 24 subsequent years of conservation tillage-based management. 
Endale et al. (2006) also reported that in an adjacent 10-ha field, the percent annual 
rainfall partitioned into annual runoff from 1940 to 1984 had a median of 5.1 and mean 
of 6.7.  This field has been in pasture for the latter 40 of the 45 years.   
 
The calculated mean and median CN values at P1 were < 40, which support the observed 
low runoff generating potential of no-till management at P1. In contrast, the CN values 
from standard Tables (the NRCS National Engineering Handbook, Section 4, Hydrology) 
for conditions at P1 would be in the 60 to 70 range at antecedent rainfall condition II. 
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That is: for hydrologic soil group A (least runoff-prone; sand, loamy sand, sandy loam); 
row crops on straight row and with good hydrologic condition; and small grains on 
straight row and good hydrologic condition. The effect of the grass waterway was to 
reduce the Table-obtained CN values by approximately 3. Using a value of 63 for CN and 
0.2 for the initial abstraction ratio in equations 1 and 2, the runoff estimate from the mean 
rainfall amount of 55 mm (Table 2) becomes 7.5 mm, which is 60% over the recorded 
mean runoff of 4.8 mm. According to the standard CN Tables, CN values in the 30 to 40 
range are assigned to pastures or meadows in good hydrologic condition. Hence P1 is 
acting as such under the long-term no-till management. Nevertheless, there was a 30% 
probability of exceeding a CN value of 60 but with no correlation with runoff amount 
(i.e. for CN > 60, Q varied from very small to large). On the other hand a plot of CN 
versus Q/P (not shown) indicates CN values > 60 for Q/P ≥ 15% approximately.  Below a 
Q/P value of 15% the CN values are scattered in a band that approximately has its upper 
bound line at CN = 80, and its lower bound a line from CN=0 to CN = 60 at Q/P of 15% 
with a couple of values showing outside of these bounds either side.  
 
There was agricultural drought in 13 of the 33 years whereby, in addition to reduced 
rainfall during crop growing season, annual rainfall was 747 to 1169 mm compared to the 
long-term average of 1250 mm. These years usually occurred in clusters: 1985-1988 
(876-1007 mm); 1999-2002 (917-1169 mm); and 2006-2008 (747-1038 mm). Generally 
the mean number of annual runoff events was somewhat lower during these relatively 
‘dry’ years than during the other ‘normal-wet’ years. However, the correlation for a 
regression of the number of the yearly runoff events against the annual rainfall proved 
low (r2 0.19), but the slope (0.005) was significant while the intercept (-2.93) was not. As 
previously indicated, some but not many runoff events had not been considered because 
we could not accurately quantify the runoff due to errors.      
 
A major thrust in recent times towards improving the CN method is the idea of replacing 
the initial abstraction ratio (λ) value of 0.2 with 0.05 (Hawkins et al., 2009). It is 
interesting that the mean λ value found in this study was 0.15. However, the median was 
0.04. Hawkins et al. (2009) and others have pointed out that in the original selection of λ, 
0.2 was in fact the slope of the median line for a regression of the initial abstraction Ia 
against the maximum storage potential S. So the data here support the call to changing λ 
to 0.05.  
 
Hawkins et al. (2009) and others have suggested ordered pairs and asymptotic approach 
towards a more standardized method to calculating CN with a potential to include many 
smaller storms than the existing approach. Under this procedure, each of the rainfall and 
runoff data are sorted on a rank order which pairs the rainfall-runoff data on similar 
probability index. This means individual runoff events might not necessarily be 
associated with the rainfall that caused them. Curve Numbers are then calculated from 
these ordered pairs. 
 

CONCLUSIONS 
 
Long-term (33-yrs) continuous row crop management of a small Georgia Piedmont 
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catchment under no-till resulted in low mean and median CN values (30-40). Runoff 
partitioning was <1% of rainfall in 50% of the storms. The CN values from standard 
Tables for the conditions at the catchment are approximately double those found here. 
This led to a 60% over prediction of runoff when the standard CN method was used with 
the 33-yr mean rainfall and CN of 63. Curve Numbers exceeded a value of 60 for Q/P ≥ 
15%. Below a Q/P value of 15% the CN values are scattered in a band that approximately 
has its upper bound line at CN = 80, and its lower bound a line from CN=0 to CN = 60 at 
Q/P of 15% with a couple of values showing outside of these bounds either side. The 
initial abstraction ratio λ had a median value of 0.04 in contrast to the standard value of 
0.2, supporting recent calls for changing this standard value to 0.05. Agricultural drought, 
where annual rainfall was approximately 80 to 500 mm below long-term average, slightly 
reduced runoff events but the correlation of annual rainfall with the annual number of 
runoff events was weak.  
 
In a calibration and verification study such as this, it is extremely important that the data 
accurately represent field conditions. Vigilance is required to scrutinize all data from 
digitized charts and more recent automated systems to make sure that volumes and 
synchronization of rainfall and runoff are accurate. For example, in earlier digitized data, 
where there was some doubt about the correct synchronization of the rainfall-runoff 
curves, the choice of the correct initial abstraction Ia proved critical. A small change in Ia 
produced large swings in CN and λ, including some times λ >1, an unacceptable values 
for this model. Future work will more closely examine the variability of the CN values 
over the 33 years with respect to runoff amount, seasons, crops and crop stages, weather 
data, prior rainfall, and temporally. The suggested ordered pairs and asymptotic approach 
for calculating CN values (Hawkins et al., 2009) will also be investigated.        
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