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Abstract According to the US Environmental Protection Agency (USEPA), sediment is a leading cause of water 
quality impairment (US EPA, 2002).  The annual costs of sediment pollution in North America alone are estimated 
to range between $20 and $50 billion (Pimentel et al., 1995; Osterkamp et al, 1998, 2004).  Due to the large spatial 
and temporal variations inherent in sediment transport, suspended sediment measurement can be difficult.   

The overall goal of this research was to develop and test an inexpensive sensor for continuous suspended sediment 
monitoring in streams.  This study was designed to determine if the gain and phase components of permittivity could 
be used to predict suspended sediment concentrations (SSC).  For this study, gain (dB) was the ratio of the input 
voltage to the output voltage and phase (deg) was the difference between the phase of the input signal to the output 
signal (Tang, 2009). To test this concept, prediction models for SSC were built with input variables of temperature, 
specific conductivity, and gain and/or phase at multiple frequencies.  The permittivity sensor that was developed is 
comprised of an electrode, power source, and a control box or frequency generator. 
 
Partial Least Squares (PLS) regression techniques were applied to gain and phase data for 127 of the 635 
frequencies.  The three models with the lowest error between predicted and actual values of SSC for validation were 
further tested with nine levels of independent validation data.  The largest model error (error >50%) occurred for the 
top three models at 0 and 500 mg/L.  At the higher concentrations error varied from 1-40%.  The prediction 
accuracy for the independent validation data set increased for the top three models at levels of near 1000 mg/L.  
Model 3A, a phase-based model, preformed the best.  Model 3A was able to predict six of the nine independent 
validation treatment levels within 300 mg/L.  Future research will provide additional laboratory and field testing of 
the prototype sensor. 

 
INTRODUCTION 

 
Suspended sediment is a global problem; the US Environmental Protection Agency (US EPA) identified sediment as 
a leading cause of water quality impairment in 2002 (US EPA, 2002).  A survey of streams throughout the United 
States determined 46% of streams analyzed suffer from excessive siltation (Berkman and Rabeni, 1987).  In North 
America the annual costs due to sediment pollution are estimated to range between $20 billion and $50 billion 
(Pimentel et al., 1995; Osterkamp et al, 1998, 2004).  Due to the large spatial and temporal variations inherent in 
sediment transport, the precise and accurate measurement of suspended sediment is difficult to achieve (Wren et al., 
2002).  The majority of sediment movement occurs infrequently during large rainfall events, requiring the rapid 
mobilization of field personnel into potentially hazardous flood conditions.  Traditional methods for measuring 
suspended sediment are also expensive.  As of 2006 only a quarter of the USGS stations collecting daily sediment 
data in 1981 were still in service.  The decrease in sediment monitoring stations is primarily due to cost (Gray and 
Gartner, 2009).   
 
Currently the USGS is testing multiple new sensing technologies in U.S. rivers and in laboratories for measuring 
certain characteristics of suspended sediment, bed load, and bed material.  The technologies include: bulk optic or 
turbidity, laser optic, pressure difference, and acoustic backscatter (Gray and Gartner, 2009).  The informal 
Sediment Monitoring Instrument and Analysis Research Program with the USGS is working to determine if the 
above technologies can make the shift from research to operational applications (Gray and Gartner, 2009).  The new 
technologies are being rigorously tested for accuracy and reliability across a range of physiographic conditions.   
 
A more advantageous alternative to traditional SSC measuring techniques would have to be cost-effective, 
autonomous, and have increased temporal and spatial resolution.  High-quality suspended sediment data will allow 
researchers to better quantify soil losses due to hillslope and channel erosion, the rate of reservoir sedimentation, and 
the results of landuse and climate change, management actions, and restoration efforts on aquatic systems (Wren et 
al., 2002).  
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The overall goal of this research was to develop and test an inexpensive sensor for continuous suspended sediment 
monitoring in streams.  Specific objectives included developing a prototype permittivity electrode for use in stream 
systems and developing and assessing a prediction model for SSC. 
 
Background on Permittivity Permittivity is a physical description of the effects of an electric field on a dielectric 
medium and how the medium then affects the electric field (Robinson et al., 1999).  Permittivity is measured 
indirectly with an impedance sensor by monitoring the sensor and sample volume, and then removing the known 
geometric factors of the sensor to calculate permittivity of the sample volume (Lee et al., 2007a; Lee et al., 2007b).  
The following equations are necessary to calculate permittivity from impedance measurements: 
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where εr

’ is the real part of the relative permittivity, C is the capacitance between the plates (F), ε0 is the permittivity 
of free space (8.85X 10-12 F m-1), g is the geometric factor of the sensor (m-1), εr” is the imaginary part of relative 
permittivity, G is the conductance between plates (S), and f is frequency (Hz).  Further background and theory on 
permittivity sensors is available in Lee et al. (2007).   
 
Permittivity Sensors and Suspended Sediment As noted by Lee et al. (2007b), applying permittivity 
measurements to complex, heterogeneous systems is still a very “black box” approach.  This statement also applies 
to measuring SSC via a permittivity method.  However, Figures 1-2 detail the potential reactions of multiple 
scenarios to low, medium, and high frequencies.  High frequencies will be greater than or equal to the dielectric 
relaxation point of water (17 GHz; as stated by Robinson et al., 2003).  Medium frequencies will be less than or 
equal to the relaxation point for soils (<1 GHz; as stated by Robinson et al., 2003).  Low frequencies will be less 
than 10 MHz. The scenarios predict how the output signal will change with variations in the heterogeneous mixture 
within the sample volume.   The sample volumes include water with ions present (Fig. 1) and water with sediment 
present (Fig. 2).  The reaction of the sample volume to high, medium, or low frequency in each scenario will be 
discussed in terms of gain and phase, where signal loss can be due to ionic conductivity and dispersion.  For this 
study, gain (dB) was the ratio of the input voltage to the output voltage (Equation 3) and phase (deg) was the 
difference between the phase of the input signal to the output signal (equation 4; Tang, 2009). 
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For the first scenario (Fig. 1) at 1 GHz, both gain and phase will be greater than one as energy is stored in the 
sample volume.  At 17 GHz, gain will be greater than one due to conductive losses, but phase will be near zero as 
the ions in the water increase the conductive properties of the water.  For the second scenario (Fig. 2) at 10 MHz, 
gain will be greater than one and phase will be much greater than one because both sediment and water will polarize 
and store energy within the system.  However, it will take longer for the system to discharge, increasing the 
difference in phase between the input and output signals.  At 1 GHz, both gain and phase will be significantly 
greater than one; only water will be able to polarize and store energy.  The storage is less than in scenario one 
because it is believed that sediment will inhibit the polarization of water.  At 17 GHz, gain will be greater than one 
due to conductive losses; phase will be close to zero due to the conductive properties of water. 
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Figure 1 Predicted response of water with ions to the application of high and low electromagnetic currents.  Input 
signals, molecular response to the signal, and the signal transmitted through the media are shown for both 

frequencies. 
 
 

 

 

Figure 2 Predicted responses of water with suspended sediment to the application of low (10 MHz), medium (1 
GHz), and high (17 GHz) electromagnetic currents.  Input signals, molecular response to the signal, and the signal 

transmitted through the media are shown for all three frequencies.  Brown signifies soil molecules and blue 
represents water.  Blue bars on the output signal represent the response of just water as expressed in Figure 1. 
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METHODS FOR PERMITTIVITY SENSOR TESTING 
 
Laboratory experiments were conducted to create a prediction model to accurately convert measured changes in 
solution permittivity to changes in sediment suspension of varying concentrations.  The experiments took place in 
the Ecological Engineering Laboratory in the Department of Biological Systems Engineering at Virginia Tech.  The 
study evaluated possible interactions between SSC, specific conductance, and temperature.   
 
The permittivity sensor was comprised of an electrode, power source, and a control box or frequency generator.  To 
complete the study, a bench-scale suspension system was built to maintain a homogeneous suspension throughout 
the testing period (Utley, 2009).  The suspended sediment sensor was calibrated via a static calibration procedure 
using known concentrations over the required sensor range.  The prediction model was verified by randomly 
generating nine concentrations, measuring the permittivity of each suspension, and predicting the SSC with the 
transfer function.   
 
Bench-Scale Apparatus  Electrode design and manufacturing  The electrode consisted of four 22 gauge stainless 
steel plates constructed to make a parallel plate capacitor (Figure 3a).  The top of the electrode was fabricated from a 
small plastic container with casting resin as the insulating medium to ensure the wire contact points with the plates 
remained dry.  The plates had a surface area of 59.78 cm2 with a 3-mm spacing between the plates to allow 
suspended sand grains to flow between the plates.  The wiring of the plates followed an alternating plate polarity 
pattern.  
 
Control Box and Power Source The Biological and Agricultural Engineering (BAE) Department at Kansas State 
University (KSU) is developing a frequency response (FR) permittivity sensor for water quality and soil 
applications.  For this study a control box (2005 version) from KSU served as the frequency generator and 
microcontroller for the sediment electrode described above (Figure 3b).  The control box used in this study 
generated 635 frequencies between 50 Hz and 120 MHz and monitored two output variables that compared the input 
voltage signal to the output signal at each frequency.  Detailed information regarding the control box is available in 
Tang (2009). 

 
The power supply for the permittivity sensor was an Extech Instruments, 80 watt switching DC power supply 
(model 382260; Waltham, MA).  The Extech power supply provided the required maximum voltage of 9 V and the 
maximum current of 4 amps. 
 
Permittivity Data Collection and Analysis The study was conducted using 10.57-L solutions at three different 
conductivities (0, 250, 500 S/cm), seven different sediment concentrations of kaolinite (0, 500, 1000-5000 mg/L), 
and three temperatures (10, 20, 30°C) for a total of 63 treatment levels.  Kaolinite is a 1:1 clay with a low surface 
charge and does not shrink or swell appreciably due to changes in moisture content.  The kaolinite used in this study 
was from the Kaolin Company (Thiele B-80, Kaolin Filler Grade, CAS #1332-58-7) and contains crystalline silica 
(CAS #14808-60-7).  Specific conductivity and temperature were monitored independently of the permittivity 
sensor.  Temperature was monitored using a digital, traceable thermometer (Traceable Control Company, VWR 
model 61220416, Friendswood, Texas).  Specific conductivity was monitored with a conductivity meter specifically 
calibrated for levels under 1990 μS/cm (EC Testr waterproof microcontroller series, model 296102).  SSC was also 
measured for each SSC-treatment level using five, 28-mL aliquots removed from the sample volume to determine 
the exact SSC within the sensor measurement volume.   
 

                                         
 

Figure 3 a) Permittivity electrode, b) KSU BAE control box (version 2005). 

a) b) 
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For each conductivity, temperature, and SSC combination the suspension was analyzed at 635 frequencies from 50 
Hz to 120 MHz to test the response behavior over a range of frequencies.  The sample volume was analyzed by 
measuring gain and phase for each of the 635 frequencies.   
The KSU control box collected three full sets of data with each run.  In this study six runs or 18 individual replicates 
of gain and phase data were collected per treatment level.  Data processing included collapsing the 18 replicates to 
three test data files by averaging six replicates of data into tests A, B, and C for the Partial Least Squares regression 
analysis.  The data set was also reduced to prevent model “over-fitting” by selecting gain and phase data for every 
fifth frequency instead of all 635 frequencies.   
 
The PLS regression analysis required explanatory (X) and predictor (Y) variables and the data had to be designated 
as training or validation data.  Gain and phase values for all three replicates (tests A, B, and C) of seven treatment 
levels were removed from the statistical analysis for later model validation.  The seven levels identified for 
validation were selected via a stratified, random sampling procedure with one validation point per concentration 
level. The combination of temperature and conductivity was randomly selected.   Table 1 summarizes the treatment 
levels selected for validation.  Multiple combinations of explanatory variables were analyzed to find the best 
combination for the prediction of SSC (Y).  The PLS analysis was conducted in SAS JMP version 8.0 (2008 SAS 
Institute Inc., Cary, NC). 
 

Table 1 Treatment levels randomly selected for validation. 
 

Concentration 
(mg/L) 

Treatment # Temperature level 
(°C) 

Conductivity level 
(μS/cm) 

0 2 10 250 
500 17 30 250 
1000 19 10 0 
2000 33 20 500 
3000 43 30 0 
4000 49 20 0 
5000 60 20 500 

 
Prediction Model Development Partial Least Squares regression balances two priorities, explaining predictor 
variation (x-variable) and response variation (y-variable).  PLS maximizes the variation explained by both predictor 
and response variables by generalizing and combining features from principle component analysis (PCA) and 
multiple regression (Abdi, 2003).  It is most appropriate to use in cases where there are more x-variables than 
observations because it is not affected by multicollinearity in the ways that plague traditional regression techniques 
(SAS JMP help, 2009; Abdi, 2003).   
 
The X-matrix for each model created was composed of temperature, conductivity, and either gain and/or phase 
values for 127 frequencies.  The X and Y matrices were also normalized; means and standard deviations for each 
variable were calculated based on data sets A and B only.  The data were normalized to compare variable 
importance or significance.  Normalizing all the data allows a “unit” change in one variable to equal the “unit” 
change in another.  As the phase data were an order of magnitude larger than the gain data, this was a necessary step.   
 
Models were created for three scenarios where gain, phase, and gain and phase data at the 127 frequencies were 
entered in the X matrix.  Two models were created for each scenario.  The first model used a “leave one out” cross 
validation procedure to select the number of latent variables to be included in the model.  The cross validation 
selection procedure tries to minimize the Root Mean Square Error (RMSE) independent of the amount of variation 
explained in Y.  For the second model the number of latent variables was selected by the user.  The percent error 
between the treatment value and the predicted value was calculated. The six models created during the first analysis 
were repeated with one significant difference: all data for 0 mg/L were removed from the analysis to determine the 
change in accuracy by removing the concentration with the highest prediction error.   
 
Validation Data Collection and Analysis Two types of validation procedures were completed on the prediction 
models.  The first was briefly described above and was completed as part of the PLS analysis.  The second 
validation procedure was completed on the three prediction models with the lowest overall validation error for 
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concentrations between 433.8 and 5000 mg/L with an independent data set.  Nine treatment combinations of 
concentration, temperature, and conductivity were randomly selected and organized for the validation study.  The 
range for each independent variable remained constant between model development and validation studies.  
Treatment levels are shown in table 2.  Nine sets of data were collected for each treatment.   
 
The validation data were post-processed following the procedure discussed earlier for PLS model development.  
Following post-processing, SSC levels were predicted using the top three models developed.  Prediction values for 
the nine treatment levels were calculated for each data set (A, B, and C) and then averaged for the final prediction 
value.   
 

Table 2 Nine treatment levels randomly generated for the validation study. 
 

Concentration Conductivity Temperature 
(mg/L) (μS/cm) (deg C) 

2000 230 25 
3800 330 25 
800 80 12 
3200 230 27 
100 220 15 
3000 350 25 
4800 420 27 
2400 280 19 
1500 130 18 

 
RESULTS FROM PERMITTIVITY SENSOR TESTING 

 
Quality Control for Suspension System Once a collection technique was identified, five subsamples were 
collected to determine the actual concentration within the sample volume of the suspension system.  In general, 
greater than 90% of the treatment level was recovered in the subsamples for each concentration level except the 500 
mg/L treatment level.  The sub-samples for each concentration were normally distributed based on Shapiro-Wilk test 
(α=0.05).  Sample means for each concentration were significantly different than the treatment levels based on a 
student t-test (α=0.05).  Therefore the measured concentration was used for model development instead of the 
treatment level. 
 
Partial Least Squares Regression Results Twelve PLS regression models were developed, four for each set of 
input variables.  Half of the models had the 0 mg/L treatments removed from the analysis because 0 mg/L had the 
highest error.  Each model was based on three sets of training data.  Seven treatment levels were excluded from the 
training data and were used as validation data.  In general, 500 mg/L and 5000 mg/L were the most difficult levels to 
predict both with training and validation data when 0 mg/L was included in the analysis.  The first two models for 
each input category used a cross validation procedure to determine the number of latent variable to include in the 
model, while for the third and fourth models the number of latent variables was specified by the user.  A summary of 
the twelve PLS models is provided in Table 3. 

 
Table 3 Summary of the 12 PLS regression models. 

 

Model Name Input variables 
Cross 

Validation 
# of Latent 
Variables 

% of Y variation 
explained 

Model 1A Gain yes 8 83.33 
Model 1B Gain yes 6 78.48 
Model 2A Gain no 15 90.83 
Model 2B Gain no 15 93.39 
Model 3A Phase yes 3 49.29 
Model 3B Phase yes 8 77.23 
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Model 4A Phase no 15 86.43 
Model 4B Phase no 15 88.48 
Model 5A gain and phase yes 10 87.36 
Model 5B gain and phase yes 5 76.24 
Model 6A gain and phase no 15 92.65 
Model 6B gain and phase no 15 95.99 

 
The three models with the lowest overall validation error between predicted and actual SSC values from the 12 
models described above were selected to test with the second set of validation data (table 4 and 5).  Figure 4 
compares the prediction error of both training and validation data sets for the three selected models: model 2A, 
model 3A, and model 6B.  Models 2A and 3A had prediction errors greater than 50% at SSC of 0 mg/l; however, 
validation errors over the rest of the concentrations were less than most of the other models.  The large error for 0 
mg/L may be due to human error in cleaning the system between runs or may be an effect of conductivity when no 
sediment was present.  All of the models performed best at concentrations from 1000 to 5000 mg/L with an accuracy 
of ± 140 mg/L for model 2A, ± 560 mg/L for model 3A, and ± 320 mg/L for model 6B.  However, the error for 
models 2A and 6B increased for concentration around 3000 mg/L to ± 1200 mg/L. 
 

Table 4 Summary of error for the training data of the 12 PLS models. 
 

Model 1 2 3 4 5 6 
Conc. 
(mg/L) A B A B A B A B A B A B 
0.0 1.10 N/A 1.41 N/A 0.33 N/A 2.09 N/A 2.04 N/A 2.29 N/A 
433.8 -0.88 -0.08 -0.51 -0.13 -2.21 -0.77 -0.59 -0.22 -0.70 -0.58 0.42 -0.16 
913.8 -0.48 -0.20 -0.15 -0.03 -1.02 -0.32 -0.28 -0.27 -0.32 -0.38 0.18 -0.06 
1844.0 -0.21 -0.02 -0.08 -0.04 -0.41 -0.17 -0.11 -0.07 -0.11 -0.03 0.05 -0.02 
2787.6 0.09 0.13 0.01 0.01 0.14 0.04 0.06 -0.02 0.04 0.03 0.02 0.00 
3686.0 0.06 0.15 0.08 0.04 0.12 0.06 0.10 0.05 0.04 0.05 0.04 0.02 
4590.7 0.11 0.18 0.06 0.05 0.45 0.14 0.06 0.06 0.10 0.17 0.02 0.02 

 
Table 5 Summary of error for the validation data of the 12 PLS models. 

 
Model 1 2 3 4 5 6 
Conc. 
(mg/L) A B A* B A* B A B A B A B* 

0.0 19.71 N/A 8.57 N/A 12.35 N/A 1.34 N/A 16.20 N/A 11.03 N/A 
433.8 -3.48 -3.80 -3.19 -2.94 -0.47 -3.84 -3.58 -1.92 -2.84 -3.11 -2.81 -2.65 
913.8 -0.59 -0.67 0.22 0.61 -0.11 -2.40 -1.06 -1.22 -0.50 -1.00 0.22 0.06 
1844.0 0.18 0.08 0.04 0.33 0.17 0.20 -0.09 0.26 0.28 -0.02 0.09 0.22 
2787.6 -0.41 -0.41 -0.44 -0.51 -0.21 -0.23 -0.48 -0.38 -0.46 -0.29 -0.58 -0.43 
3686.0 0.25 0.32 -0.02 0.13 0.25 0.52 0.54 0.27 0.19 0.37 0.21 0.21 
4590.7 0.13 0.16 0.05 -0.17 0.20 0.17 0.07 0.12 0.10 0.24 0.07 -0.01 

*Model selected for further validation testing. 
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Figure 4 Error comparison of the training and validation data for the top three models: model 2A, model 3A, and 6B.  

All three models have the most difficulty predicting concentrations near 0 mg/L and 500 mg/L. 
 

Validation Data Results Prediction values for nine treatment levels were calculated for each data set (A, B, and C) 
and then averaged for the final prediction value.  Error between the predicted and actual values of SSC was 
calculated (Fig. 5).  The first level (100 mg/L) was not shown in this plot because the error was orders of magnitude 
greater than the other concentration levels, greatly exaggerating the y-axis scale.  All three models have the most 
difficulty predicting concentrations between 100 mg/L and 1500 mg/L.  Model 3A does the best job predicting 
concentration. 
 
The data used to develop the PLS models were normalized; therefore, when using the PLS models for independent 
validation, the input data must be normalized by the same standard deviation and mean values as used to develop the 
prediction models.   The predicted values for the independent validation data were calculated with the following 
equations:  
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where normalized_input_value is the gain or phase value once normalized; x is the gain (dB) or phase (deg) value 
measured by the KSU control box at a specific frequency; x bar is the mean value of x; stdevi is the standard 
deviation of x; normalized_SSCpredicted is the normalized, predicted SSC from model 1, 2, and 3; b is the model 
intercept; coeft is the coefficient for temperature; temp is the temperature recorded during sampling (°C); coefc is the 
coefficient for specific conductivity; cond is the conductivity recorded during sampling (μS/cm); i is a counter 
variable for the number of frequency-based variables (gain and phase) included in the model (127 variables for 
model 2 and  254 variables for models 5 and 6); coefi is the coefficient for variable i; and, xi is the normalized gain 
or phase value measured by the KSU control box.  Both the explanatory and predicted variables were normalized.  
Therefore, the predicted SSC must be reverse-transformed.  The mean SSC for the models developed with all 
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concentration levels was 2037 mg/L and the standard deviation was 1602 mg/L.  When 0 mg/L treatments were 
removed from the analysis (model 6B) the mean was 2376 mg/L and the standard deviation was 1478 mg/L.   
 
Two of the three models selected for prediction with the independent validation data did a poor job of predicting the 
nine treatment levels.  The predicted levels were orders of magnitude higher for 100 and 800 mg/L for all three 
models.  Model 3A did the best job predicting concentration for all treatment levels except 100 and 4800 mg/L.  It 
was expected that model 3A would have a difficult time predicting 100 mg/L based on the earlier validation results.  
Models 2A and 6B did the best job predicting concentration between 2000 and 4000 mg/L.   
 
Investigations into the source of these poor predictions showed the distribution for many of the gain and phase 
variables in the independent validation data set had a different distribution than the prediction model data set.  For 
most variables the mean gain and phase values did not vary significantly, but the standard deviation for 40-50 
variables was double the size of the standard deviation values of the prediction model.  The variation in standard 
deviations between data sets led to normalized values of gain within the validation data set as high as 20 instead of 
ranging between -2 and 2. 
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Figure 5 Error comparisons of the actual and predicted concentrations for eight of the nine validation treatment 
levels. 

 
DISCUSSION OF PREDICTION MODELS 

 
Accuracy of PLS Regression models  Based on the initial training and validation data for models 2A, 3A, and 6B it 
was expected that the models would be able to predict SSC to +/- 150-500 mg/l over most of the study range (0-
5000 mg/L) except for concentrations at or close to 0 mg/L.  However, the error for models 2A and 6B increased for 
concentration around 3000 mg/L to ± 1200 mg/L. 
 
This was not the case as seen in the analysis of the independent validation data set where all of the predicted levels 
for two of the models (2A and 6B) were significantly greater than the treatment levels (± 2000 mg/L).  This drastic 
decrease in model accuracy was due to differences in the distributions of the gain and phase values between the 
prediction data and the independent validation data.  At this point it is not clear if response to the shifted distribution 
is a weakness of PLS regression technique or there was a hardware malfunction in the measurement system, 
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resulting in validation data with a significantly different distribution than the prediction data even though similar 
treatments were applied.  However model 3A which was based on temperature, specific conductivity, and 127 
frequencies of phase data was able to predict six of the nine independent validation levels within ± 300 mg/L.  The 
increased accuracy of model 3A could mean that phase values are less susceptible to variations within the hardware 
than gain values. 
 
Conclusions on Permittivity Sensor  Hardware Comparisons  Traditional bottle or pump sampling techniques for 
SSC are time consuming, expensive (collection and analysis), and can be dangerous under storm and flood stage 
conditions.  There is also a scale discrepancy between the measurement time-scale and the time-scale at which most 
desired calculations are completed (Gray and Gartner, 2009).  Currently there are three surrogate technologies that 
are gaining credibility: turbidity or optical backscatter sensors, laser diffraction systems, and acoustic backscatter 
systems (Gray and Gartner, 2009).  No one system provides the solution for all sediment monitoring challenges; 
therefore, the strengths and weaknesses of each measurement system compared to the conditions of the study site 
must be taken into account (Gray and Gartner, 2009).  Some common weakness include particle size dependency, 
spatial or temporal resolution, and susceptibility to biofouling (Gray and Gartner, 2009; Wren et al. 2000).   
 
This study supported the concept that permittivity measurements can predict SSC.  The modeling predictions were 
most accurate (±150-500 mg/l) from 1000 to 5000 mg/L.  This falls within the common measurement range of most 
turbidity (0-2000 mg/L or 0-5000 mg/L) and laser diffraction systems (0-2000 mg/L) currently available on the 
market (Gray and Gartner, 2009).    
 
Cost Comparisons  Currently the cost estimate for a common turbidity sensor is $5000 (Gray and Gartner, 2009).  
Laser and acoustic systems can easily cost two to six times that amount (Gray and Gartner, 2009).  It is believed that 
the permittivity system will be inexpensive to produce and may be on the scale of or less than a traditional turbidity 
sensor.  Permittivity electrodes could potentially be multiplexed with one controlling system, allowing the user to 
deploy multiple electrodes at a field site with only one control system. 
 
Conclusions for PLS Regression and Validation Multiple models generated within this study were able to predict 
treatment level with errors less than 10% during model development.  However, SSC predictions made during a 
validation procedure were orders of magnitude greater than the treatment levels for concentrations under 1000 mg/L.  
At this time strong conclusions cannot be drawn regarding the feasibility of using permittivity to predict SSC.  It is 
suspected that differences in the distribution of the validation data compared to the prediction model data set caused 
the poor predictions.  Although two of three models tested with independent validation did not show promise, the 
phase-based model (model 3A) did predict six of the nine treatment levels within 300 mg/L.  It would be beneficial 
to repeat the independent validation portion of this study.  First, the control box and all system connectors would 
need to be tested to determine if the control box contributed to the error in the independent validation predictions for 
models with gain as input variables (models 2A and 6B).  It may also be necessary, if significant changes are made 
to the KSU control box, for the entire prediction model data set to be collected again. 
  

FUTURE WORK ON PERMITTIVITY SENSOR 
 
Future work for sensor development  The primary goal of this study was to determine if it was feasible to 
distinguish between different suspended sediment concentrations using a permittivity sensor.  The previous sections 
present data and analyses that were able to distinguish differences over a large range of concentrations.  It is 
recommended that future work on the application of permittivity measurements for predicting SSC include 
designing a more appropriate electrode for the environmental conditions present in lotic systems.  Possible research 
question include: 

 How can the design of the sensor electrode be manipulated to maximize capacitance and minimize flow 
effects?   

 How does the electrode geometry affect sediment movement between the plates?   
 How can electrode geometry and plate materials be optimized to prevent biofouling?   
 Can a permittivity sensor predict both SSC and particle size distribution?   
 With the optimal electrode geometry can the accuracy of SSC prediction be increased to the scale necessary 

for research?   
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Future Work for PLS Regression and Validation   This project generated a significant amount of data because 
the exact modeling technique was not known at the onset.  One modeling technique was presented in this paper.  
There are many more options available for modeling frequency based data.  Future work on the prediction and 
validation components of this study includes the following: 

 Can other multivariate modeling techniques predict SSC with higher accuracy than the PLS regression 
completed in this study?   

 Are temperature and conductivity not significant in predicting SSC once sediment enters the system?   
 Why does model performance decrease at concentrations at or near 0 mg/L?   
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