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Abstract Existing methods for estimating mean grain size of sediment in an image require either 
complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or 
statistical procedures involving calibration. We present a new approach which uses Fourier methods 
to calculate grain size directly from the image without requiring calibration. Based on analysis of 
over 450 images, we found the accuracy to be within approximately 16% across the full range from 
silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, 
in conjunction with recent advances in technology for taking appropriate images of sediment in a 
range of natural environments, promises to revolutionize the logistics and speed at which grain-size 
data may be obtained from the field.  

 
INTRODUCTION 

 
Using photographs to quantify grain size (and other properties) of sediment beds is of considerable 
utility because it offers unparalleled savings in cost and labor, and unrivalled rapidity compared to 
manual methods, especially if measurements can be made in a completely automated fashion. 
Photographic methods thus can provide much greater spatial coverage and resolution of grain-size 
measurements than methods such as sieving and laser diffraction (Rubin, 2004; Barnard and others, 
2007). In addition, measurements are non-intrusive which, from a logistics point-of-view, means 
that bulky samples do not need to be transported and, from a science and monitoring point-of-view, 
means that only those grains that are exposed to the flow (and are thus subject to transport or 
winnowing) are sampled.  
 
Applying this relatively simple concept has been hampered by two principal challenges; the first 
has been obtaining quality images of sediment, particularly of sands, and especially of sands under 
water. This issue has recently been addressed by a series of new instruments designed for a variety 
of fluvial and oceanic environments (Rubin and others, 2007; Barnard and others, 2007; Rubin and 
others, 2010; Buscombe and others, 2010). The second challenge has been the development of an 
analytical process that is fully automated, precise (to within a few percent), and fully transferable 
(or universal) across all of the non-cohesive sediment sizes (from silt to cobble) and mineralogy. To 
date, automated methods for grain size estimation from images have relied on calibration (Rubin, 
2004; Carbonneau and others, 2004, 2005; Verdu and others, 2005; Buscombe and others, 2008), on 
complicated sequences of image processing that isolate and measure each individual grain (e.g., 
Graham and others, 2005), or on both. In this paper, we briefly describe a new method for 
estimating mean grain size that overcomes both of these disadvantages. For a more detailed 
presentation of the method, its range of applicability, and especially for the mathematical reasoning 
behind the approach, see Buscombe and others (2010).  
 
Most automated grain-size methods start by identifying the outlines of each grain and then assign a 
measurement to it. In this way, a grain-size distribution can be determined, from which population 
statistics such as the mean are calculated. This approach relies on sophisticated sequences of image 
processing algorithms which mimic what a person may achieve by manually digitizing grain 
boundaries. Currently, the best algorithms work well on dry coarse-gravel riverbeds, usually, but not 
exclusively, supported in a sand or fine gravel matrix (e.g., Sime and Ferguson, 2003; Graham and 
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others, 2005). However, previous application of this approach has used sediment population-
specific coefficients and tunable parameters for filters and image processing operations (such as 
filter window size), because of the optical differences between different sets of grains in various 
environments. In addition, the methods are often sensitive to the specific sequence of operations. 
Therefore, these techniques have been neither transferable between different sediment populations 
nor applicable across the full range of non-cohesive sediment sizes (see reviews by Graham and 
others, 2005; Buscombe and Masselink, 2009; Warrick and others, 2009; Buscombe and others, 
2010). 
 
The new approach outlined in this paper is essentially statistical, quantifying pixel intensity 
variations in an image and relating these quantities to grain size. The approach is very different 
from most existing methods (e.g., physical methods such as sieving/calipers, and image analysis as 
described above), because the individual grains are not measured. Statistical methods developed to 
date (including the one outlined in this paper) produce measurements of mean grain size only, not 
the whole distribution of sizes. However, the statistical approach avoids the major difficulties 
inherent in detecting the boundaries of every grain in an image, a problem compounded by 
differences in sediment type and grain-size fraction. Further, a statistical approach can operate at 
finer scales than traditional image analysis methods (i.e., it can return robust estimates at coarser 
image resolutions: Carbonneau, 2005; Graham and others, 2005), and it offers the potential for 
grain size and other features to be expressed and modeled mathematically. 
 
Statistical methods follow from Rubin (2004) who showed that, in images of natural sediments with 
different mean grain size, the spatial autocorrelation coefficient at a given lag is a function of the 
mean grain size. No tunable parameters are required, although calibration is needed for each 
sedimentary environment and/or camera-lighting system. Calibration is required to address optical 
effects unique to the camera system (lens, spatial distortions and lighting), and to address non-
random aspects of the structure of the sediment bed (for example imbrication, and correlations of 
grain size with grain shape and color). Warrick and others (2009) successfully used a calibration 
catalogue obtained from photographs of sediment that had similar grain size ranges but were in very 
different environments, which suggests that calibration catalogues may be more important for the 
specifics of the lighting-camera system than for the properties of the sediment. Questions remain, 
however, regarding the sensitivity of results to how calibration is performed. Key questions include 
how many grain-size fractions the catalogue should contain, to what pixel lag, and what degree of 
overlap is acceptable in the calibration curves. Given these issues, a universal algorithm (i.e., one 
that does not need calibration) is highly desirable.  
 
Here, we propose a method to estimate mean grain size from an image that requires neither 
calibration nor image segmentation procedures. The method is tested with over 450 images of 
natural sediment beds composed of mixed grain sizes, with mean grain sizes spanning 3 orders of 
magnitude, from photographs of various grains from silt to cobble, the samples from each sediment 
environment photographed with a different camera and lighting system.  This method uses spatial 
autocorrelation profiles (autocorrelation coefficients at increasing pixel lag distance: hereafter, 
correlogram) from a set of calibration images (of known sediment size) to give highly accurate 
estimates of mean grain size in an image by solving a simple least-squares problem (Rubin 2004). 
This method – variously termed the autocorrelation (Barnard and others, 2007; Warrick and others, 
2009) or the look-up catalogue (Buscombe 2008; Buscombe and Masselink 2009) approach - has 
been shown to be highly accurate for close-up photographs of sand and gravel (Rubin and others, 
2007; Barnard and others, 2007; Buscombe and Masselink, 2009; Warrick and others, 2009), and 
similar techniques have been shown to work well for larger-scale, coarser-resolution imagery from 
aerial platforms (e.g. Carbonneau and others, 2004, 2005; Carbonneau, 2005). 
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IMAGE REQUIREMENTS 

 
To be usable in our new method, an image should contain only non-cohesive unlithified/ 
uncemented clastic material, so that the entire image is composed of stationary grains touching each 
other (Figure 1). The lighting, provided by a natural or artificial source, should be such that the 
pixel values are higher (i.e., lighter) on the tops and flanks of individual grains, lower (i.e., darker) 
in the pores between grains, and that there is a noticeable gradient in pixel intensity with distance 
across the grain/pore. In photography terms, the optimum image for statistical grain sizing is one in 
which the features are well-resolved, and which has a high dynamic range. Note that although we 
define the dark regions between grains as pores for the purposes of this paper, this usage should not 
be confused with the more common definition of sediment porosity, even though these quantities 
may be related.  
 

Figure 1 Examples of suitable images of sediment for the method outlined in this paper.  
 

METHOD 
 
Buscombe and Masselink (2009) showed that the spatial autocorrelation algorithm was one of 
several techniques which could be used within the calibration framework of Rubin (2004). Rubin's 
original development was in one dimension using stepwise (spatial) calculations of correlation. 
Here we follow the two-dimensional extension of Buscombe (2008), which uses the frequency 
domain rather than the spatial domain. Buscombe (2008) suggested the use of the two-dimensional 
autocorrelation function (here denoted R), because the transform normalizes magnitudes of spectral 
density, making different images comparable. The spectrum of an image maps its entire contents 
into frequency space, providing information that can be used to quantify the dominant wavelength 
of image features. The technique of Buscombe (2008) also allows estimates to be made of the major 
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and minor grain diameters. Furthermore, it was suggested that the diameter of some contour 
between 0 and 1 of the two-dimensional surface of autocorrelation should be related to the mean 
grain size, which in turn suggested that mean grain size might be determined without calibration.  
 
A brief summary of our approach is as follows: each pixel is multiplied by -1(x+y) to center it, and 
the mean subtracted from each pixel to eliminate harmonics. Then the fast Fourier transform is 
applied to this centered, de-meaned image. The absolute values of the Fourier transformed image 
are squared to give the variance spectrum. The inverse Fourier transform of the variance spectrum 
yields the autocovariance function, which is normalized by its total power (each value divided by 
the maximum value found at position x=0, y=0) to yield the two-dimensional autocorrelation 
function R. Fara and Scheidegger (1961) showed that it can also be found by the multiplication of 
the variance spectrum with the complex conjugate of the variance spectrum. 
 
Expressed as such, intervals of lengths other than 2π can be handled by scale factors, and the 
wavelength of both the demeaned image and R is given by λ = 2π/k, where k is a vector of 
wavenumbers with units of length-1 (Fara and Scheidegger, 1961), or 1/pixels. The mean grain size 
will be represented by some value of k. Under basic Fourier theory, a waveform given by e-ikx  

(where e is the base of the natural logarithm and x is…) will have wavelength (periodicity) λ = 2π/k, 
and the correlogram of such a function should be in anti-phase at λ/2 (half wavelength) lags; should 
equal 0 at λ/4 lags; and should equal 0.5 at λ/2π = k lags. This suggests that the lag at which R = 0.5 
is a suitable value for k. These relationships and their implications are discussed in detail in 
Buscombe and others, (2010).  
 
To test this approach, we collected hundreds of images of sediment for which a measurement of the 
mean grain size was available. All images were of natural, non-cohesive, non-organic sediment, 
either taken in situ or in the laboratory. Over 450 images met the image criteria outlined above and 
were used to test the new technique. Sediment properties in images varied widely, with grain size 
ranging from 0.063 to 150 mm, and 10 different sedimentary “populations” were included (5 
beaches, 3 rivers, and 2 continental shelves). All sediments were undisturbed, and photographs were 
taken both in air and water. Each sediment population was photographed using a different camera 
and lighting system.  
 
These images were used to test the hypothesis that the optimum objective value of k is the lag at 
which the images autocorrelation surface (R) equals 0.5, as outlined above. This was achieved by 
computing the correlogram for each image to find lags associated with a range of coefficients of R, 
substituting these values for k, and correlating the resulting grain size estimates with the known 
mean grain size for each image. These analyses confirmed the lag at which R = 0.5 as the 
appropriate value for k, as this value yielded the highest correlation between observed and estimated 
mean grain size. Thus, scaling by image resolution r (units of length/pixel) provides a very simple 

yet universal measure which scales to near-unity with measured mean grain size, z = 2πrk. 

Wavenumber k may vary as a function of cross-section through R. In this case the value of k (in 
pixels) is found as the radius of an ellipse fitted to the coordinates of the contour R = 0.5. Software 
routines for performing the above analyses are available from the authors in various languages and 
tested on a number of operating systems. 

 
VALIDATION AND RESULTS 

 
“True” mean grain size was determined by manual point counts on images. Point counts are 
considered superior to sieving as the benchmark for testing statistical methods of image analysis, 
because it is the only method to compare different techniques using the exact same grains (Barnard 
and others, 2007; Rubin and others, 2004; Warrick and others, 2009).  Point-counts were performed 
as follows. In each digital image, a grid composed of 100 intersections was drawn and the 
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intermediate diameter of the grain (pore to pore) underneath each grid intersection was measured. 
The mean of all these manually measured values is therefore a grid-by-number estimate. It is 
important to note that it is the intermediate projected axis which is apparent in the image, not the 
true (or calipered) intermediate axis, but that both automated and manual techniques measure the 
projected axis. Counting grains at every grid intersection makes the grain selection free from 
operator bias. To avoid artificially reducing the calculated mean diameter by measuring grains that 
are not fully exposed (i.e., grains that are partially hidden by other grains), the person doing the 
counting has the option of moving from the grid intersection to the first complete grain in a 
specified direction. For further details and validation of this procedure, see Barnard and others 
(2007) and Buscombe and others (2010). 
 

 
Figure 2 Estimated mean grain size in test images also analyzed using point counts (“measured” 

values), for 12 sediment populations photographed with different camera and lighting systems. Each 
symbol represents an individual photo. Solid lines show the 1:1 relationships. Compiled from data 

in Buscombe and others (2010).  
 
Figure 2 shows estimated and “true” mean grain sizes for each of the 12 sediment populations 
tested. The histogram of these individual errors is approximately normal centered around zero, 
which supports our choice of 0.5 for the universal value of grain length scale k. Note that although 
the percentage-based errors appear to be linear, normalization makes these values non-dimensional 
and therefore non-linear and roughly equivalent to a phi-based measurements (cf., Warrick and 
others, 2009). The root mean squared (r.m.s, or irreducible) error (which includes both systematic or 
procedural bias, and random error/scatter) was calculated as 16%. 
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EXPERIMENTAL TRIALS 
 

In order to explore the limits of the new technique and to inform its practical use, three physical 
experiments were carried out with photographic images of gravel-sized sediment. These 
experiments represented just three out of any number of physical situations which might 
conceivably degrade images and affect the accuracy of our technique. Others could include shadows 
cast by nearby objects, small areas of vegetation (e.g., algae or moss), and oblique viewing angles 
and resulting image distortions, all of which might benefit from tests to characterize the sensitivity 
of our results to real-life issues. 
 
The first two experiments addressed practical aspects of implementation of our approach under 
water, specifically with coarse bed material where suspended sediment and refraction of light by the 
water/air interface will affect the photograph because the image must be taken at some distance 
above the bed. In contrast, imaging of sand under water is carried out in contact with the bed using 
a macro lens and a faceplate (e.g., Rubin and others, 2007). Because the faceplate is pressed onto 
the bed during imaging, the image is not affected by turbidity or random scattering of light. 
 
In the first experiment, images were taken of well-rounded beach gravel through 50cm of water 
with an inexpensive waterproof camera. Point-counts of the grains were carried out to calculate the 
true mean grain size, and increasing concentrations of mud were mixed into the water and the bed 
was rephotographed. Differences between true and estimated grain-sizes with suspended-sediment 
concentrations of 3.31, 5.38, and 10.31 mg/L were 9, 26, and 30 %, respectively. There was thus a 
clear positive bias in estimated grain sizes with increased suspended sediment concentration.  
 
The second experiment was conducted to test the effect of random ambient light on mean grain size 
estimates. One hundred images of well-rounded beach gravel were taken under water with agitation 
of the water surface sufficient to cause natural light to refract randomly on the gravel surface. 
Agitation did not induce motion of the grains. Again, point counts on 1 image were used as a 
benchmark to compare the results. Figure 3 shows the differences (in percent) between true and 
estimated mean grain size as a result of non-uniform “natural” scattering of light. Variability was 
within 10%, which is lower than the r.m.s. error of the method.  
 

 
Figure 3 Error associated with randomly varying light, in 100 images of stationary gravel in water.   

 
The third experiment was performed to examine the effect of variations in natural daylight, in air, 
on mean grain size estimates. Two images were taken of well-rounded stationary beach gravel at 
every hour through the day, from 1m above the bed. The first image of each pair was unshaded, and 
the second shaded by an umbrella. Errors in mean grain size estimates were once again evaluated 
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against a point-count carried out on the grains in the image. Figure 4 shows the percent errors in 
estimated grain size as a function of sun angle, for both the shaded and unshaded photographs. 
Errors were on the order of 15 - 25 % when no measures were taken to shade the grains from direct 
sunlight, and were reduced to less than 5 % when images were shaded, which removed large 
directional shadows cast by grains on each other. These findings are consistent with the findings of 
Graham and others, (2005) and Warrick and others, (2009), who also found significant reductions in 
error when measures were taken to remove large shadows caused by oblique sun angles. We did not 
find a clear relationship between solar angle and error in this preliminary study. As significant 
improvements occurred in our experiments when lighting source was diffuse, we recommend 
shading from direct sunlight, because the discrepancies (in mean grain size) which may arise due to 
the unevenness of the surface (and possibly the intensity of sunlight) may outweigh those 
introduced by the angle of solar incidence.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Error associated with different solar illumination angles, overall lighting (bright vs. hazy) 
and shading. 

 
IMAGE CONSIDERATIONS 

 
The minimum resolvable grain size in an image is a function of spatial resolution and of the 
distribution of grain sizes present (i.e., the sorting). While it is often possible to tell visually if 
grains in an image are adequately resolved, an automated and quantitative measure of resolution is 
highly desirable. Experiments were therefore conducted to find an objective measure of the point 
where grains become under-resolved. Randomly selected images were progressively down-sampled 
(i.e., interpolated over a smaller grid) and the standard deviation (contrast) computed for each 
downsample. We defined the point at which an image becomes under-resolved as the point where 
the greatest decrease in standard deviation per unit down-sample rate occurs. A more practical 
definition for an under-resolved image is one whose autocorrelation value at lag 1 is less than 0.7. 
The theoretical autocorrelation curve where R(1) = 0.7,  therefore, may be taken as an 
approximation to the correlogram at the threshold between adequately and not adequately resolved. 
Correlograms at or below this threshold should not be used as it is highly likely that grains are 
under-resolved. One rule of thumb for optical image analysis is that the minimum grain radius be at 
least 2 - 3 pixels, which seems reasonable visually, and also agrees with the minimum workable 
grain scale of Warrick and others (2009).  
 
The value R = 0.5 always corresponds to the steepest part of the correlogram of an image. 
Therefore, although ellipse-fitting on the 2D correlogram can return k at sub-pixel precision (i.e., 
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decimal lags), the resulting mean grain size estimates are sensitive to small deviations away from R 
= 0.5 in this region (e.g., 0.49 or 0.51). This sensitivity could increase uncertainty in the estimated 
mean grain size. However, while it is beyond the scope of this paper to explore this in depth, we 
predict that this probably is only a significant concern when the image resolution is relatively poor, 
approaching the 2 - 3 pixel limit suggested above. 
 
Autocorrelation should be calculated over sufficient lags to ensure R falls at least to below 0.5, but 
no farther than R = 0 as no new information is gained after that (Buscombe and others, 2010). Since 
there is a disproportionate amount of information in the first few lags, autocorrelation should be 
calculated for every 1 pixel shift. Lighting is crucial to the success of optical techniques, and the 
guidelines laid down by Rubin and others (2007); Warrick and others, (2009); and Buscombe and 
others, (2010) should be followed. Lighting should be optimized so that the contrast between pores 
and grains is maximized, but without overexposing either, and should avoid strong reflections from 
grain facets and crystal faces (see the grains in Figure 1 for examples). In general, lighting should 
be as diffuse as possible with no perceivable gradient, which means that lighting should be provided 
from at least two opposing sides of the image rather than from directly above (Rubin and others, 
2007). 

 
SUMMARY 

 
We present a new method that determines mean grain size directly from an image using Fourier 
techniques. The resulting mean grain size is most closely related to the mean intermediate (b-axis) 
particle diameter. The measure may be thought of as more closely related to the mean of individual 
particle diameters rather than the moment-derived mean of a size-distribution evaluated over 
discrete grain-size classes. The method presented here is sensitive to the major axes of the projected 
areas of grains lying imperfectly in a semi-plane, which has been shown by Kellerhals and others, 
(1975) to, given sufficient sample size, satisfactorily approximate the true mean intermediate (b) 
axis. Thus the method presented here inherently accounts for the effects of overlapping grains. A 
correction factor would have to be applied to the results of the technique outlined here to provide 
estimates of the mean long (a) and short (c) axes of particles. 
 
The measure of sediment size against which estimates have been compared is the mean of 100 
particles, randomly sampled, on corresponding images, measured by eye from pore to pore across 
the intermediate (b) axis of the particle (here called point-counts). This measure has been found to 
be a linear function of the radius of an ellipse fitted to the R = 0.5 contour of the 2D correlogram. 
No averaging takes place in the estimate, over individual particles or sediment size classes. 
Therefore it is a measure which has very few degrees of freedom.  
 
Physical experiments showed that turbid water can bias grain-size estimates (up to 40%), but that 
the random refraction of light by ripples resulted in small (less than 10%) random errors. The 
smallest errors (less than 5%) were found in shaded images of gravel beds that were illuminated by 
natural solar light and photographed in air. Shading was shown to be very important as it removes 
large directional shadows cast by grains on each other.  
 
This new method should have a similar derivation for other similar statistical approaches, for 
example semivariance (e.g., Carbonneau and others, 2004, 2005; Verdu and others, 2005; 
Buscombe and Masselink, 2009). In addition, the insights obtained here may also be used to 
optimize the use of the spatial autocorrelation technique of Rubin (2004), which solves for mean 
grain size using a least-squares fit between the correlogram of a sample image (of unknown mean 
grain size) and a catalogue of correlograms associated with sediment of known mean grain size. For 
example, the theoretical forms of the correlogram as presented in this paper may be of use in the 
selection of grain-size fraction spacing, and other ways pertinent to calibration catalogue design.  
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There may be a unique value of R associated with several percentiles of the grain-size distribution, 
but this may be restricted to idealized cases of very well sorted sediment photographed at very high 
resolution. The highest level of precision will be achieved if the new method is partially calibrated. 
By this we mean that, if point-counts on (fine and coarse) end members of individual sediment 
populations reveal significant bias (in the form of an apparent slope in data away from the 1:1 line), 
maximum precision will be achieved by carrying out a regression and correcting for the slope of the 
bias. We predict that reliable estimates of the whole grain size distribution will always require some 
form of calibration, due to the multifarious nature of images of sediment.  
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