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Abstract 

Surface-water hydraulic models require accurate representation of the river and (or) floodplain 

geometry, and the resulting dataset can be too large for most one-dimensional models.  Selecting 

the appropriate data points to use in the model from among the hundreds or thousands of data 

points can be both challenging and tedious. 

  

The problem is even more challenging for multi-dimensional datasets such as bathymetry or 

datasets produced from using Light Detection and Ranging (LiDAR).  These datasets are 

typically used in two- and three-dimensional surface-water models.  The standard procedure 

usually consists of gridding, which generalizes the terrain—missing the high and low elevations.  

To more effectively perform this task, the Genetic Algorithm (GA) computer program was 

modified to decimate (i.e. reduce) multi-dimensional datasets.  The program was then used to 

decimate data for a hypothetical example and data taken from an actual bathymetric and LiDAR 

dataset.  Results indicated that the program successfully reduced the data.  Terrains produced by 

the GA are fairly representative of the original data, and volumetric differences from the original 

terrain were smaller for the GA produced terrain than standard procedures of decimating LiDAR.  

Results also showed that near-optimal results could be obtained in a single GA run.   

 

INTRODUCTION 

 

Traditionally, surveyed stream profiles and cross sections and (or) Light Detection and Ranging 

(LiDAR) scans are used to obtain data that describe the channel shape of streams and floodplains 

and are used in mathematical computer models to simulate flow hydraulics and sediment 

transport in a stream.  A cross section is a series of data pairs (distance and elevation) along a 

straight line that is roughly perpendicular to streamflow.  These datasets can be large.  For 

example, data for approximately 500 cross sections were collected on the Kootenai River in 

northern Idaho.  The number of data points for each cross section ranged from about 500 to more 

than 2,000 points (Barton et al., 2004; and Moran and Berenbrock, 2003).  LiDAR and 

bathymetric datasets present an even larger problem.  These datasets are usually used in two- and 

three-dimensional surface-water models.  For example, a raw LiDAR dataset from the Lower 

Coeur d’Alene River for a 1 kilometer (km) by 1 km area consisted of more than 350,000 data 

points (x, y, and z).  If a 10 km x 2 km reach of this river and floodplain were selected to be 

modeled, the dataset would consist of more than 6 million data points. 

 

For flood insurance studies, the Federal Emergency Management Agency (FEMA) indicates that 

cross-section points should be located at breaks in the ground slope and should approximate the 

actual shape of the channel and (or) floodplain (FEMA, 1995).  There is no point minimum as 

long as the actual shape of the channel and floodplain are well defined.  The FEMA requirement 

applies to cross-section data, but is a reasonable requirement for multi-dimensional datasets such 

as digital elevation models (DEM) and bathymetric and LiDAR datasets. 
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These large datasets can be reduced to smaller, less dense datasets that are easier to work with—

a process called decimation.  Previous investigators have developed automatic decimation 

procedures.  Chen and Guevara (1987) presented an automatic point selection procedure called 

―very important points‖ (VIP) for selecting points directly from DEMs or triangulated irregular 

networks (TIN).  VIP is essentially a high-pass filter that selects data based on the distance a 

point is from the 4 lines connecting its diametrically opposed neighbors.  Factors such as slope 

and proximity guide the selection of data points.  This procedure has several potential problems. 

First, the peak of a small, sharp hill will be considered more important than a peak of one that is 

large, yet slopes gently.  Secondly, the VIP procedure chooses nearly all of the points along 

valleys and ridges.  It is desirable to capture these important features.  However, if a ridge or 

valley follows a straight line, that feature may be represented by two or a few points instead of 

by many points.  Another disadvantage is that the VIP procedure chooses nearly all of the points 

along the boundary, thereby overly defining the margins of the study area. 

 

Berenbrock (2006) developed a genetic algorithm (GA) for decimating cross-section data while 

ensuring the integrity of the cross-section geometry.  The program successfully decimated cross-

section data and fit better to the original data than standard procedures—selection of a data point 

a set distance apart or selecting every 10
th

, 20
th

, or n
th

 point.  On average, differences between the 

original cross sections and the GA-produced cross sections were about 30 percent less than cross 

sections obtained using standard procedures. 

 

The purpose of this paper is to describe application of a GA to the decimation of LiDAR data 

and demonstrate that the GA is a viable approach.  The GA described in this paper uses a single 

objective optimization scheme for decimating LiDAR and bathymetric data.  A hypothetical 

example and a case study with actual data are presented to validate the genetic algorithm.  The 

hypothetical example is a square dataset composed of 961 x, y, and z data points.  The case 

study, Coeur d’Alene River and Floodplain Application, consists of bathymetric data from the 

river and LiDAR data from the floodplain. 

 

GENETIC ALGORITHM 

 

Genetic algorithms apply the ideas of Darwin’s theory of evolution: individuals more adapted to 

the environment have a better chance to survive (―survival of the fittest‖).  Genetic operators 

such as selection, reproduction (crossover), and mutation are used to improve a population.  

Holland (1975) was the first to apply these operators.  Since then, GAs have been applied 

successfully to many water resource problems (McKinney and Lin, 1992; Cieniawski et al., 

1995; Vink and Schot, 2002; Chen, 2003; Knaapen and Hulscher, 2003).  Vink and Schot (2002) 

and Chen (2003) indicated that GAs are capable of handling highly nonlinear, discontinuous, 

nondifferentiable, interdependent, and nonconvex problems where many other techniques such 

as linear and nonlinear programming, heuristic, etc. cannot.  Simulated annealing relies on a 

weighted objective function that only finds one optimal solution per iteration, whereas, GAs are 

able to find multiple convex or nonconvex solutions in a single iteration (Cieniawski et al., 

1995). 
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In a GA, a population of individuals is created and evolved until an individual is obtained that 

best represents the salient features of the dataset or until a specified number of generations is 

met. Individuals exhibit traits that can be inherited.  For the problem at hand, traits are 

combinations of bathymetry and LiDAR data (terrain) points that are either included or excluded 

(removed) from the dataset to create individuals.  The inclusion or exclusion of traits might be 

represented as a string of numbers or chromosomes.  For example, the binary string ―10101111‖ 

might represent an individual where the second and fourth chromosomes (data points) are 

excluded (a value of 0) and the other chromosomes included (a value of 1).  The fitness of an 

individual (thus a fitness of traits or data point combinations) is represented as a value from the 

fitness or objective function. 

 

Chromosomes are passed from parents to offspring through a process called ―crossover‖ in 

which randomly selected chromosomes of the parents are combined or swamped to create 

children.  For example, two individuals (parents) with traits 10101010 and 11111111 are crossed 

at the sixth through the eighth chromosome to produce two children, 10101111 and 11111010. 

 

Individuals with superior fitness values are more likely to be allowed to reproduced, although 

this rule is often relaxed or altered to increase the genetic diversity of the population.  Additional 

diversity is also introduced through mutation in which randomly selected chromosomes of the 

children are changed (reassigned) to create a combination of traits not present in either parent.  A 

child that has been mutated may exhibit better or poorer fitness than the parents.  Mutation rates 

are set very low. 

 

Repeating the selection, crossover, and mutation processes over many generations under 

conditions controlled by a fitness function results in better-fit individuals and the overall 

population improves.  The concept is described as pseudo code instructions in figure 1.  

Instructions within the ―do-loop‖ are repeated until some time (number of generations) has 

elapsed, a threshold criterion has been met, or best individual fitness has reached a plateau.  

Goldberg (1989), Grefenstette (1990), Davis (1991), and Mitchell (2002) provide more complete 

discussions of the GA concept. 

 

 

 
 

Figure 1.  Pseudo code for a simple genetic algorithm. 
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PROGRAM DESCRIPTION 

 

The cross section GA program (Berenbrock, 2006) was generalized and modified to create a new 

binary GA program capable of decimating LiDAR and (or) bathymetric data.  The program uses 

strings of ones (1s) and zeros (0s) to represent the traits of individuals (combinations of present 

or omitted data points) from the dataset.  The position of chromosomes within the strings and the 

lengths of the strings are fixed on the number of original data points (n).  Ones (1s) are inserted 

into chromosome positions corresponding to data points that define the convex hull for the 

dataset.  A convex hull is a set of points that define the extent or boundary of the dataset in n-

space. 

 

An individual represents a collection of data points with values of x, y, and z on the terrain.  The 

GA program uses TINs to represent or describe the terrain because data points can be irregularly 

spaced, whereas in a DEM, points must be regularly spaced.  A TIN is composed of three points 

to form a triangular arrangement.  An individual’s volume is the volume beneath the terrain or 

volume of the TINs, which is calculated by computing the volume in each TIN and summing the 

TIN volumes. 

 

The program computes an individual’s fitness as the difference between the individual’s volume 

and the original volume.  A limit on the number of included data points was accomplished by 

imposing a two-conditional fitness function (Berenbrock, 2006).  The two-conditional fitness 

function is: 

 

 original

n

1j

j vv      if  inci    plimit 

f(i) =                   (1) 

10vv original

n

1j

j             otherwise 

 

where f is the value of the fitness for individual i, n is the number of TINs in individual i, vj is 

the volume of the TIN for trait j, voriginal is the volume of the original dataset, inci is the number of 

included data points in individual i, and plimit (point limit) is the maximum number of points to 

be included in the decimated dataset.  The first condition applies if the number of included points 

in an individual is less than or equal to the point limit; otherwise, the second condition applies.  

The GA then minimizes the fitness function (Minimize f(i)) to identify the best-fit individual or 

optimal dataset. 

 

To reduce the number of generations and program run time, an initialization technique was used 

to generate the initial population.  This technique sets the probability of a data point being 

included to the plimit divided by the string length (n).  By narrowing the search space, the GA 

then focuses its search on approximately the right number of points and does not explore 

unlikely solutions (including all points, including no points, and so on) (Berenbrock, 2006). 

 

(inci – plimit) 
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The GA is generational; two elite individuals are copied each generation.  Tournament selection 

is used as the reproduction methods, and tournament size is 3.  In the validation test, several 

different crossover rates (Pc), population sizes, and number of generations at first were used.  

The mutation rate (Pm) was set to 1/n, a standard rate suggested by Reed et al. (2000, 2003). 

 

PROGRAM VALIDATION 

 

Data representing a hypothetical example and data taken from actual bathymetric and LiDAR 

datasets collected on the Coeur d’Alene River and Floodplain were used to validate the binary 

GA.  The plimit for the hypothetical example was arbitrarily set to 15 percent of the hypothetical 

data (144 data points) and 10 percent for the Coeur d’Alene data.  A mutation rate of 1/n was 

used (Reed et al., 2000, 2003). 

 

Hypothetical Example 

The hypothetical dataset consists of 961 regularly spaced points (x, y, z) on a 31 x 31 grid, 

spaced 16 m apart (fig. 2A).  The GA was run 10 times with a population size of 80 individuals, 

for 100 generations, using a crossover rate of 0.30 and plimit of 15 percent (144 data points).  

The number of included data points ranged from 139 to 144 (table 1).  Because this GA seeks to 

minimize the fitness function (Eqn. 1), the run with the lowest fitness value is the superior or 

"best" run for the given fitness function and domain.  In this case, Run 8 had the superior fitness 

value (166 m3) given the 10 runs.  Even though the GA relies on randomness in sampling and in 

creating the initial population, the range in best fitness for all runs was small as compared to the 

range in average fitness and root mean square error (RMSE) fitness.  The small range in best 

fitness suggests that near optimal results could be obtained in a single GA run. 

 

Figure 2 shows a colorized relief terrain representation of the TIN produced by the hypothetical 

(original), VIP, LATTICETIN and 10 GA runs.  VIP and LATTICETIN are two commonly used 

TIN procedures.  The number of points used in VIP and LATTICETIN was not allowed to 

exceed the plimit (144 points).  From a qualitative viewpoint, the VIP run (fig. 2B) is a very poor 

representation of the original dataset under this condition; only 20 points were used to define the 

interior terrain while 120 points were used to define the boundary.  The terrain is under 

emphasized in the interior and over emphasized at the boundary.  As discussed earlier, VIP 

retains most if not all of the boundary points in its solution.  The LATTICETIN run (fig. 2C) 

preserved the major features fairly well but also had inaccurate features near the boundaries 

especially near the stream.  For example, the stream near the southern boundary extended too 

wide probably because only a few data points are used to define the terrain in this area.  For the 

LATTICETIN run, 37 data points are located on the boundary.  In the 10 GA runs, the major 

topographic features are preserved fairly well (fig. 2D through 2M).  Inaccurate features are also 

seen near the boundaries especially near the stream.  This is probably due to the GA runs 

containing fewer points on the boundary (ranging from 19 to 28 points) which is less than the 

LATTICETIN run.  The fewer points especially near the stream caused the stream to not fully 

extend to the boundary of the study area or caused the stream to extend too widely, similar to the 

LATTICETIN run.  For example, the stream in runs 1 (fig. 2D), 2 (fig. 2E), and 10 (fig. 2M) did
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A. Original, n=961 (120)            B. VIP Run, n=144 (120)       C. LATTICETIN Run, n=144 (37) 
 
 
 
 
 
 
 
 
 
 
 
D.  GA Run 1, n=140 (28)           E.  GA Run 2, n=144 (25)        F. GA Run 3, n=141 (23) 
 
 
 
 
 
 
 
 
 
 
 
G.  GA Run 4, n=140 (21)            H.  GA Run 5, n=139 (20)       I.  GA Run 6, n=141 (19) 
 
 
 
                   
 

                     
 
 
 
 
 
 
               J.  GA Run 7, n=140 (26) 
 
Figure 2.  Terrain from the original dataset, VIP run, LATTICETIN run, and GA runs for the hypothetical 

example.  (n is the number of data points, and value inside the parenthesis is the 

number of points located on the boundary) 

 

Elevation of TIN, in meters 

Explanation 

∙ Data point (x, y, z) 
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K.  GA Run 8, n=139 (21)           L.  GA Run 9, n=143 (19)        M.  GA Run 10, n=140 (20) 
 

Figure 2. — Continued. 

 

 

Table 1.  Best fitness value, number of data points, and number of 

points on the boundary for the hypothetical example. 
 

  Best Number of  

 Number of fitness value points on Figure 

Run data points (cubic meters) boundary no. 

Original 961 -- 120 3A 

VIP Run 144 -- 120 3B 

LATTICETIN Run 144 -- 37 3C 
1
GA RUN 1 140 361 28 3D 

1
GA RUN 2 144 355 25 3E 

1
GA RUN 3 141 771 23 3F 

1
GA RUN 4 140 518 21 3G 

1
GA RUN 5 139 271 20 3H 

1
GA RUN 6 141 260 19 3I 

1
GA RUN 7 140 332 26 3J 

1
GA RUN 8 139 166 21 3K 

1
GA RUN 9 143 1,110 19 3L 

1
GA RUN 10 140 460 20 3M 

 

1 The crossover rate (Pc) was set to 30 percent, the mutation rate (Pm) was set to 1/n, plimit 

was set to 15 percent or 144 points, and n is the number of data points in the original 

data (961). 

 

 

not fully extend to the northern boundary of the study area, and the stream in run 4 (fig. 2G) did 

not fully extend to the southern boundary. 

 

The best, average, and RMSE fitness values for Run 8 are shown in figure 3.  The best fitness 

decreased as the number of generations increased indicating that the program functioned 

correctly for this large dataset; best fitness decreased from 1,540 m
3
 to 518 m

3
.  To measure the 

distribution of the population, the average and RMSE fitness values are calculated for each 

generation.  If the average and RMSE fitness values are large, then the diversity between 

individuals is high; if average and RMSE fitness values are small, the diversity is low.  The 

genetic algorithm might not perform well if the diversity is too high or too low.  For example, if  
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the population’s diversity is too low, the 

genetic operator ―crossover‖ becomes almost 

ineffective and the population probably will 

have a hard time escaping from the local 

optimum where the population has 

converged too.  On the other hand, if the 

population’s diversity is too high, an optimal 

solution might not be reach or take a long 

time (number of generations) to reach.  The 

large range in average and RMSE fitness 

values shown in figure 3 indicates that the 

population is  highly  diverse.   These  values 

also fluctuated from one generation to the 

next indicating changes in the population.  

Similar results were observed in the other 

nine runs. 

 
Volumetric results from the VIP, LATTICETIN, and GA runs and the original are shown in 

figure 4.  The volume for the original and each run is calculated by computing the volume for 

each TIN in the dataset and then summing those TIN volumes.  Results for the VIP run were 

much lower than the original indicating that the VIP-produced terrain is inaccurate in this 

example.  The volumetric differences from the original for this run are quite large (fig. 4B).  The 

number of interior data points (20 points) in this run was not enough to produce a reasonable 

volumetric representation of the original. Volumetric results for the LATTICETIN run closely 

track the original (fig. 4A). Differences in volume from the original and the LATTICETIN run 

are small for heights greater than 1 m (fig. 4B); differences increase when heights are less than 1 

m, which can be seen in the unnatural shape of the stream (fig. 2C).  Results for the GA runs 

showed that volumes closely track the original and are bunched together in a narrow band (fig. 

4A),  which  also  supports  that  near  optimal  results  could  be  obtained  in  a  single  GA  run. 

 

 

    
 

Figure 4.  (A) TIN volumes for the original, VIP, LATTICETIN, and GA runs and 

(B) volumetric differences from the original for the hypothetical example. 

Figure 3.  Best fitness, average fitness, and 

root mean squared error (RMSE) fitness 

for each generation of GA Run 8 for the 

hypothetical example. 
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Differences in volume from the original in the GA runs are also small (fig. 4B).  The greatest 

differences occurred in the middle heights and are probably cause by the fitness function in the 

GA basing its volumetric calculations only at a 0 m height.  These differences are small but are 

evidence of the deficiency in the GA.  A fitness function is needed that integrates the entire 

volume along the curve. 

 

Coeur d’Alene River Application 

For the real world application, a section was extracted from LiDAR and bathymetric datasets 

from the Coeur d’Alene River and Floodplain near river mile 156 (Berenbrock and Tranmer, 

2008). The subsection, 1073 m (0.67 mi) wide and 952 m (0.60 mi) long, contains 10,080 points.  

The GA initially was run with the same parameter values as in the hypothetical example, except 

plimit was arbitrarily set to 10 percent (1,008 points). 

 

The GA was run 10 times for the Coeur d’Alene River dataset.  The best fitness and number of 

points for each run are shown in table 2.  The run with the lowest fitness value is the superior or 

"best" run because this GA seeks to minimize the fitness function (Eqn. 1).  The range of best 

fitness for the GA runs varied from 165 m
3
 to 1,390 m

3
.  The fourth GA run had the superior 

fitness of all the runs.  The best, average, and RMSE fitness values for Run 4 are shown in figure 

5.  Again, as expected, the best fitness decreased as the number of generations increased 

indicating that the program functions correctly for large datasets.  The best fitness decreased 

from 12,200 m
3
 to 165 m

3
.  The large range in average and RMSE fitness values indicates that 

the population is highly diverse, and the fluctuations from one generation to the next show the 

changing diversity in the population.  Similar results were observed in the other nine runs. 

 

Table 2.  Best fitness value, number of data points, and number of 

points on the boundary for the Coeur d’Alene River application. 
 

  Best Number 

of 

 

 Number of fitness value points on Figure 

Run data points (cubic 

meters) 

boundary no. 

Original 10,080 -- 396 6A 

VIP Run 1,010 -- 262 6B 
1
GA RUN 1 1,003 473 52 -- 

1
GA RUN 2 993 1,310 48 -- 

1
GA RUN 3 990 1,390 41 -- 

1
GA RUN 4 1,003 165 41 6C 

1
GA RUN 5 1,008 903 41 -- 

1
GA RUN 6 1,008 856 45 -- 

1
GA RUN 7 962 1,360 50 -- 

1
GA RUN 8 1,005 242 46 -- 

1
GA RUN 9 1,008 812 47 -- 

1
GA RUN10 1,004 940 45 -- 

1 The crossover rate (Pc) was set to 30 percent, the mutation rate (Pm) was set to 1/n, 

plimit was set to 10 percent or 1,008 points, and n is the number of data points 

in the original data (10,080). 
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Figure 5.  Best fitness, average fitness, and root mean squared 

error (RMSE) fitness for each generation of GA Run 4 for 

the Coeur d’Alene River. 

 

Figure 6 shows a colorized relief terrain representation of the TINs produced by the original 

dataset, VIP run and the GA run 4.  From a qualitative viewpoint, the major topographic features 

for the VIP run are generally preserved (fig. 6B).  However, several large discontinuities in the 

terrain occurred in the study area.  The discontinuity in the river could have significant impacts 

on river flows if this dataset were used in a multi-dimensional model, and the discontinuity of the 

hill could have impacts on floodplain flows.  Neither the Fourth of July Creek, the road/levee 

north of the river, nor the road south of the river is distinguishable (fig. 6B).  If the VIP had 

fewer points located along its boundary (262), there would be more points available for the 

interior that would give more definition to the interior especially to areas in the river.  A 

LATTICETIN run was not conducted because the LATTICETIN requires regularly spaced data 

throughout the domain.  The LiDAR and bathymetric datasets used in the subsection are 

regularly spaced but the datasets do not line up to one another to create a regularly spaced 

dataset.  Together the dataset is considered irregularly spaced, and thus, a LATTICETIN run 

could not be performed.  This is a distinct advantage of a TIN and a disadvantage in 

LATTICETIN that requires regularly spaced data.  The major topographic features for the fourth 

GA run are generally preserved even along the boundary (41 points located on the boundary) 

(fig. 6C) unlike what happen in the hypothetical example.  A plausible explanation is that there 

are enough points near the boundary to obtain a good representation.  Neither the Fourth of July 

Creek nor the road/levee north of the river is distinguishable in the fourth GA run, but the road 

south of the river is somewhat distinguishable (fig. 6C). 

 

Volume was calculated for these runs.  These volumetric results also closely tracked the original.  

Again, results from all GA runs fell within a narrow band similar to results from the hypothetical 

example, which supports that near-optimal results could be obtained in a single run.  Volumetric 

differences were also calculated for these runs, but only the VIP run and the fourth GA run, the 

superior GA run, are shown in figure 7.  Differences from the original in the VIP run were 

greater at all heights than in the fourth GA run.  The largest differences between the two runs 

occurred when the height ranged from 10 m to 20 m. 
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A. Original, n=10,080 (396)      B.  VIP Run, n=1010 (262) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 C.  GA Run 4, n=1003 (41) 

 

 

Figure 6.  Terrain from the original, VIP run and GA run 4 for the Coeur d’Alene River 

application.  (n is the number of LiDAR points, and number inside parenthesis is 

the number of points located on the boundary) 
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Figure 7.  Volumetric differences in TIN volumes from the original to 

the VIP Run and GA Run 4 for the Coeur d’Alene River application. 

 

SUMMARY AND DISCUSSION 

 

This paper demonstrates that a Genetic Algorithm (GA) is a viable approach for solving the 

LiDAR/bathymetric decimation problem.  GAs cannot assure exact solutions, but yield 

reasonable solutions to optimization and search problems.  For the hypothetical example, TINs 

from the GA runs are fairly representative of the original, but gave poor representation near the 

boundary.  The VIP compared poorly to the original and to the GAs.  The LATTICETIN 

compared favorably to the GA runs.  The GA and LATTICETIN runs compared favorably to the 

original data with the LATTICETIN, overall, closer to the original.  To better fit the original 

data, the fitness function used in the GA needs to integrate the entire volumetric curve and rather 

than just the total volume of the TINs.  Also results from these GA runs demonstrated that near-

optimal results could be obtained in a single GA run. 

 

For the case study of Coeur d’Alene River and Floodplain, TINs from the GA runs are fairly 

representative of the subsection even along the boundary.  The VIP run also showed fair 

representation. Some of the finer features such as creeks, levees and roads were poorly defined in 

the GA and VIP runs.  TIN volumes from the superior GA run (no. 4) and VIP compared 

favorably, with the GA run having a smaller difference from the original.  A LATTICETIN run 

could not be performed because the combined bathymetric and LiDAR data do not line up to 

produce a regularly spaced dataset. 

 

Although the genetic algorithm was successful in decimating the datasets, it still needs to be 

tested with datasets having more data points.  The current fitness function calculates the volume 

of an individual at the zero height.  A fitness function that integrates volume along its height 

(hypsometric curve) might cause the GA to select better fit individuals in the population that 

have smaller differences from the original at all elevations.  Also the current fitness function 

always selects the plimit as the number of inclusions.  A fitness function that gradually penalizes 
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more points and gradually gives credit to fewer points might also enable the GA to select a good 

minimum number of points.  These improvements are left for future investigations. 
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