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Abstract: Hydrologic predictions are subject to various sources of error due to uncertainties in 
the atmospheric forcing observations and predictions, hydrologic model initial conditions, 
parameters and structures, and streamflow regulations. To allow risk-based decision making in 
water resources and emergency management, quantification of predictive uncertainty in 
streamflow forecasts across short, medium and long ranges is necessary. To obtain reliable 
predictive uncertainty, it is necessary to account for both input (i.e. atmospheric) and hydrologic 
uncertainties accurately. To provide uncertainty-quantified streamflow forecast products 
operationally, the National Weather Service (NWS) Office of Hydrologic Development (OHD) 
and its partners have been developing a prototype hydrologic ensemble forecast system, the 
EXperimental Ensemble Forecast System (XEFS). The principal components of the prototype 
system are currently implemented in the Community Hydrologic Prediction System (CHPS). 
Testing and experimental operation of the XEFS components have begun in late 2009 at selected 
NWS River Forecast Centers (RFC). In this paper, we describe the progress and plans, 
evaluation results from hindcasting experiments, and challenges ahead. 

 
INTRODUCTION 

 
Uncertainty-quantified water resources and flood forecast products from short to long ranges are 
one of the most pressing needs in operational hydrologic forecasting today. The National 
Weather Service (NWS) Office of Hydrologic Development (OHD), in collaboration with the 
NWS River Forecast Centers (RFC), Deltares and other partners, has been developing the 
EXperimental Ensemble Forecast System (XEFS) to meet this need. The principal components 
of XEFS are currently being implemented in the NWS’s Community Hydrologic Prediction 
System (CHPS). The CHPS-XEFS also includes ensemble hindcasting capability that allows 
systematic validation of the ensemble forecast system, large-sample verification of the ensemble 
products, and cost-effective collaborative research and development and research-to-operations 
transition of new or improved scientific components. In this paper, we describe the progress and 
plans, evaluation results from hindcasting experiments, and challenges for operational hydrologic 
ensemble forecasting. 
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WHY HYDROLOGIC ENSEMBLE PREDICTION? 
 
Though various stochastic methods have been used widely in a wide array of hydrology and 
water resources applications, hydrologic ensemble prediction is relatively new. Below we 
describe the motivations from the perspective of operational hydrologic forecasting: 
• Provide estimates of predictive uncertainty - For the forecasters, such uncertainty information 

provides an objective guidance for the level of confidence that they may place in the raw 
model forecasts. For the users, predictive uncertainty allows risk-based decision making 
specific to their applications. 

• Improve the absolute accuracy of the forecast – This may be achieved by optimally merging 
or combining multiple forecasts in the single-valued or ensemble sense, respectively 
(Geogakakos et al. 2004). 

• Extend forecast lead time - Weather and climate forecasts are generally highly uncertain and 
noisy. As such, inputting single-valued forecasts beyond a certain lead time can produce river 
stage or discharge forecast with an unacceptably large error. For this reason, in the single-
valued forecast process, the RFCs input single-valued quantitative precipitation forecast 
(QPF) into hydrologic models only out to a very limited lead time, beyond which zero 
precipitation is assumed. This practice reduces certain types of errors in the single-valued 
river forecast, but does not capitalize on the positive skill that exists in the forcing forecasts 
well beyond the capped lead time (see Fig 3). 

• Improve the forecast systems, science and process cost-effectively - Ensemble prediction 
requires quantification of major uncertainties in the forecast process. As such, it allows 
quantitative assessment of relative importance among them as a function of lead time and 
other attributes. 

 
EXPERIMENTAL ENSEMBLE FORECAST SYSTEM (XEFS) 

 
The XEFS is a prototype end-to-end hydrologic ensemble forecast system currently under 
development by NWS. It is based on the comprehensive plan developed in 2007 
(http://www.weather.gov/oh/rfcdev/docs/XEFS_design_gap_analysis_report_final.pdf). The 
NWS/OHD is collaborating with the RFCs, Deltares, the National Centers for Environmental 
Prediction (NCEP), NOAA Office of Atmospheric Research (OAR), and universities for 
research and development, and research-to-operations transition of XEFS. It is to be deployed at 
the RFCs via CHPS. The prototype components of XEFS are currently under testing and 
evaluation at selected RFCs. Additional prototypes will be deployed during the next 2 years.  
 
The XEFS consists of the following 5 principal components and the Hydrologic Model Output 
Statistics (HMOS) processor (see Fig 1): 
• Ensemble Pre-Processor (EPP): The EPP (Schaake et al. 2007, Wu et al. 2009) generates 

short- to long-range ensemble forecasts of precipitation and temperature based on the single-
valued QPF and quantitative temperature forecast (QTF) from NCEP’s Hydrometeorological 
Prediction Center (HPC), the ensemble mean forecast of precipitation and temperature from 
the frozen version of the NCEP’s Global Forecast System (GFS, Hamill et al. 2006) and 
Climate Forecast System (CFS, Saha et al. 2006). 

• Ensemble Streamflow Prediction (ESP) Subsystem: The ESP inputs forcing ensembles, runs 
the necessary hydrologic models, and produces streamflow ensembles. 
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• Ensemble Post-Processor (EnsPost): EnsPost post-processes the ESP-produced streamflow 
ensembles statistically to bias-correct and to add hydrologic uncertainty (Seo et al. 2006). 
The streamflow ensembles obtained from the EPP, ESP and EnsPost operations reflect both 
the input and hydrologic uncertainties (see below). 

• Ensemble Verification System (EVS): The EVS is a prototype tool for verification of 
hydrometeorological and hydrologic ensemble forecasts such as streamflow, river stage, 
precipitation and temperature (Brown et al. 2009). It is intended for use by the RFC 
forecasters, researchers and developers at OHD, and collaborators elsewhere. 

• Graphics Generator (GG): The GG is a generic software tool for CHPS, and is responsible 
for building products for use in the forecasting process or to be disseminated to external 
users. The initial version of the software replicates the functionality in the Ensemble 
Streamflow Prediction Analysis and Display Program (ESPADP). The GG software is plug-
in oriented for extensibility. The GG software components include Time series plug-ins, 
Aggregation tools, Chart appearance plug-ins, Graphics Generator engine and Graphics 
Generator user interfaces. 

• Hydrologic Model Output Statistics (HMOS): Streamflow ensemble generation via EPP, ESP 
and EnsPost is based on separate modeling of input and hydrologic uncertainties (see below). 
In certain situations, direct modeling of the total uncertainty may provide a simpler 
alternative. The HMOS directly models the total uncertainty associated with the 
operationally-produced single-valued streamflow forecast and generates an ensemble 
streamflow forecast via conditional simulation (Regonda et al. 2009). 

 

 
Figure 1 Schematic of the Experimental Ensemble Forecast System (XEFS). 
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METHODOLOGY 
 

Hydrologic ensemble forecasting with XEFS is based on source-specific modeling of major 
uncertainties, and Monte-Carlo integration of them via the total probability law (Krzysztofowicz 
1999, Seo et al. 2006): 
 

= foffofof dsqsfsqqfqqf )|(),|()|( 321       (1) 

 
where if ’s denote probability density functions (PDF), and fq , oq  and fs  denote the 

streamflow at some future times, the observed flow up to and including the current time, and the 
model-predicted streamflow at the future times, respectively. The PDF’s in the integrand in 
Eq.(1) may be rewritten as: 
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where fb  denotes the boundary conditions of precipitation and temperature at the future times,  

i  denotes the model initial conditions, p  denotes the model parameters, and )(⋅ε denotes the 

error in predicting fq  given oq  and fs . The error function )(⋅ε  is obtained by inverting the 

prediction model for fq . In rewriting Eq.(2), we assumed for simplicity but without loss of 

generality that there is no updating of model states based on observed streamflow. The PDF’s 
)(5 fbf , )(6 pf  and )(7 if  in Eq.(2) correspond to the EPP, the parametric uncertainty processor, 

and the initial condition uncertainty processor, respectively, the latter two of which will be 
implemented in the future. Currently, all hydrologic uncertainties are modeled by the single term 

),,( fof sqqε  in EnsPost. In the following two sections, we describe how )(5 fbf  and 

),|(2 fof sqqf  in Eqs.(2) and (3) are obtained by EPP and EnsPost, respectively. 

 
As noted in the previous section, HMOS models the total uncertainty directly (Regonda et al. 
2009). Within the above mathematical description, streamflow ensemble generation using 
HMOS amounts to the following special case: 
 

)()|(3 fof sqsf δ=           (4) 

 
Note that Eq.(4) zeroes out the input uncertainty in )|(3 of qsf  and moves the uncertainty to 

),|(2 fof sqqf  (see Eq.(1)). 
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INPUT UNCERTAINTY 
 
The input certainty, )(5 fbf  in Eq.(2), is modeled numerically by the EPP (Schaake et al. 2007, 

Wu et al. 2009). It is well known that, in general, raw precipitation ensemble forecasts from the 
numerical weather prediction (NWP) models are not very reliable (i.e. biased in the probabilistic 
sense), that most of the information content is in the ensemble mean, and that, for short-range 
prediction, human forecasters add significant skill to the NWP-generated single-valued forecasts. 
The EPP uses a statistical procedure to generate ensemble forecasts of precipitation and 
temperature from single-valued QPF and QTF, respectively. The procedure models bivariate 
distributions of precipitation and temperature between the observed and forecast values. The 
precipitation and temperature forecasts used in EPP come from NCEP/HPC up to Day 5, the 
frozen version of GFS up to Day 14 and CFS up to Month 9, beyond which historical 
observations are used as forecasts. 
 
Statistical modeling of precipitation is particularly challenging due to intermittency, large 
variability, and relative small predictive skill. Since the initial development (Schaake et al. 
2007), significant improvement has been made to precipitation ensemble generation (Wu et al. 
2009). Fig 2 shows the mean continuous ranked probability score (CRPS, Hersbach 2000) of 
EPP-generated 6-hr precipitation ensembles for Day 1 for the North Fork of the American River 
basin (NFDC1, 875 km2) near Sacramento, CA. In the figure, Methods 1 and 2 represent the old 
and new versions of the technique used for precipitation ensemble generation, respectively. 
Method 3 adds parameter optimization to Method 2 (see Wu et al. 2009 for details). In the figure, 
DV and CV indicate that the results are from dependent validation, i.e. parameter estimation, and 
independent validation based on leave-one-year-out cross validation, respectively. SVF indicates 
the mean absolute error of the conditioning single-value QPF. Recall that, for single-valued 
forecasts, the mean CRPS collapses to the mean absolute error, which allows comparison 
between ensemble and single-valued forecasts. Fig 2 indicates that the quality of EPP-generated 
precipitation ensembles has improved significantly since the initial development, and that the 
technique captures the skill in the conditioning single-valued QPF very well. 
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Figure 2 Mean CRPS of ensemble hindcasts of 6-hr precipitation for all four 6-hr periods in Day 
1 from Oct. through May. The results are for NFDC1 with upper and lower areas combined. The 
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vertical bars denote the 95% confidence intervals. The mean CRPS values are conditioned on 
mean areal precipitation (MAP) ≥ 0, 6.35 and 12.7 mm. (From Wu et al. 2009) 
 
Fig 3 shows the unconditional and conditional mean CRPS (left plot) and continuous rank 
probability skill score (CRPSS, right plot) of EPP-generated precipitation ensemble hindcasts for 
NFDC1. The single-valued QPF used is the ensemble mean precipitation hindcasts from the 
frozen version of GFS. The hindcast period is from Jan 1, 1979, through Sep 30, 2002, and each 
hindcast from EPP has 55 members. The reference forecast used in the skill score calculation is 
the climatological ensembles made of 55 historical traces of observed daily precipitation. Note in 
the CRPSS plot the varying levels of significant skill in the ensemble precipitation forecasts 
multiple days into the future. 
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Figure 3 Unconditional and conditional mean CRPS (left) and CRPSS (right) of EPP-generated 
precipitation ensemble hindcasts for NFDC1. The conditioning single-valued QPF used is the 
ensemble mean precipitation hindcasts from the frozen version of GFS. The reference forecast is 
the climatological ensembles. (From Demargne et al. 2009) 
 

HYDROLOGIC UNCERTAINTY 
 
Hydrologic uncertainty comes from multiple sources: model structural errors, model parametric 
errors, errors in model initial conditions, errors in the observed forcing, human regulations of 
flow that are not known or could not be accounted for, etc. Depending on the goodness of the 
models being used, quality of model calibration, quality of observed forcing, and presence or 
absence of flow regulations, hydrologic uncertainty impacts the quality of streamflow ensemble 
forecast with varying degrees. The left plot in Fig 4 shows the unconditional and conditional 
mean CRPS of streamflow ensemble hindcasts for NFDC1 forced by the EPP-generated 
precipitation and temperature ensemble forecasts as conditioned by the ensemble mean forecasts 
from the frozen version of GFS. The right plot of Fig 4 shows the reliability component only of 
mean CRPS following its decomposition (Hersbach 2000). In the plots, the solid and dashed 
lines represent the verification results against the observed and the model-simulated flows, 
respectively. As such, the solid line reflects the total (input plus hydrologic) uncertainty whereas 
the dashed reflects the input uncertainty only. The figure indicates that, even though the 
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hydrologic modeling for this basin is of very high quality particularly for high flows, hydrologic 
uncertainty has significant negative impact on mean CRPS particularly at short lead times and 
for larger amounts of flow, and that the loss of skill is due largely to reduced reliability. The 
purpose of EnsPost is to account for the hydrologic uncertainty so that the post-processed 
streamflow ensembles are reliable (i.e. unbiased in the probabilistic sense). 
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Figure 4 (Left) Unconditional and conditional mean CRPS of streamflow hindcasts for NFDC1. 
The hydrologic model is forced by the EPP-generated precipitation ensemble hindcasts shown in 
Fig 3. (Right) Same as the left plot but reliability component only (From Demargne et al. 2009) 
 
In XEFS, hydrologic uncertainty is modeled numerically via ),|(2 fof sqqf  in Eq.(3). In the 

current version of EnsPost, all hydrologic uncertainties are aggregated into a single error term, 
),,( fof sqqε  in Eq.(3). Following normal quantile transformation (NQT) of simulated and 

observed streamflow, the above error is modeled as AR(1) (Seo et al. 2006). Recently, this 
model has been modified to account for serial correlation in the error approximately while 
maintaining parsimony. One may assess the performance of ensemble post processing without 
being masked by input uncertainty by assuming perfectly known future forcing. Due to space 
limitations, we only show a pair of examples in Fig 5 of the reliability diagram and the relative 
operating characteristic (ROC) curves for ensemble hindcasts under the assumption of perfectly 
known future forcing. The hindcasts are for daily flow at Kremmling (KRMC2, 6167 km2) in the 
upper Colorado River basin. The verification statistics are at a threshold of 95th-percentile flow. 
These and other results indicate that, in general, the post-processed streamflow ensembles are 
reliable (left plot in Fig 5) and capture the discriminatory skill (right plot in Fig 5) in the single-
valued model results very well, but that, if the flow is heavily regulated, the current version of 
EnsPost has limited positive impact. 
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Figure 5 Examples of the reliability diagram (left) and the relative operating characteristic 
(ROC) curves (right) for ensemble hindcasts of daily from at KRMC2 in the upper Colorado 
River basin under the assumption of perfectly known future forcing. 
 

CONCLUSIONS AND CHALLENGES 
 

To provide uncertainty-quantified hydrologic forecast products, the National Weather Service 
(NWS) Office of Hydrologic Development (OHD) with its partners has been developing a 
prototype hydrologic ensemble forecast system, the EXperimental Ensemble Forecast System 
(XEFS). The principal components of the prototype system are currently implemented in the 
Community Hydrologic Prediction System (CHPS). Testing and experimental operation of the 
XEFS components have begun in late 2009 at selected NWS River Forecast Centers (RFC) and 
will continue at other RFCs in the next two years. Evaluation based on hindcasting experiments 
indicates that, in general, the XEFS components are capable of generating reliable forcing 
ensembles that very well reflect the skill in the conditioning single-valued forcing forecasts and 
reliable streamflow ensembles that possess comparable skill, in the single-valued sense, as the 
operational single-valued forecasts. End-to-end evaluation of XEFS will be carried out in FY10 
using the hindcasting capabilities of XEFS in the CHPS environment. 
 
To translate skill in weather and climate predictions into uncertainty-quantified and actionable 
water information across scale, ensemble streamflow prediction must be seamless across short, 
medium, to long ranges, the forcing ensembles must be reliable, and hydrologic uncertainties in 
model initial conditions, parameters and structures as well as those due to human influences must 
be accounted for and reduced. Concerted and focused efforts are necessary by the scientific, 
operational and user communities to address the many challenges therein (adapted from Hartman 
2007): 
• Appropriately model and integrate uncertainties introduced from data, model, and human 

sources, 
• Combine ensemble forcings for short, medium and long ranges from multiple sources, 
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• Maintain spatial and temporal relationships across different scales, 
• Include forecaster skill in short-term forcing forecasts, 
• Allow forecaster guidance for hydrologic model operations through run-time modifications, 
• Maintain coherence between deterministic and ensemble forecasts, 
• Provide uncertainty information in a form and context that is easily understandable and 

useful to the customers, 
• Reduce the cone of uncertainty for effective decision support, 
• Improve accuracy of both meteorological and hydrologic models, 
• Improve uncertainty modeling of rare and extreme events (e.g. record flooding, drought) as 

extreme conditions may be outside of model limits and without historical analog, and 
• Greatly improve computing power, database and data storage. 
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