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Abstract: Water stored in the Arghandab Reservoir, in northeastern Afghanistan, supports subsistence 

agriculture in the Arghandab valley. The reservoir’s contributing watershed is mountainous and mostly 

unvegetated, contributing unusually high sediment concentrations. Since its 1952 closure, sediment has 

filled about 45% of the reservoir volume. Lost reservoir capacity makes meeting downstream demand 

during low flow years difficult. The HEC-RAS sediment model was constructed and calibrated with a 

systematic, three step calibration process, targeting:  1) total volume, 2) longitudinal distribution and 3) 

gradation of sediment deposits. The calibrated model predicted reservoir stage-volume curves for four 

scenarios, including current conditions and three spillway raises. However, hydrologic uncertainty 

complicated prediction. 

 

Gage flow records in this region are discontinuous, making hydrologic modeling challenging. Truncated 

time-series introduce uncertainty in sediment delivery and deposition simulations over standard, 50-year 

“project” time scales, longer simulations predicting reservoir lifespan. Therefore, stochastic scenarios of 

future hydrology included unobserved, low probability (1% to 0.1%) synthetic time series to quantify the 

uncertainty on long term (200 year) reservoir lifespan analyses associated with a brief measured flow 

record. This paper describes a systematic, three-stage method to calibrate 1D reservoir models, and an 

approach to hydrologic uncertainty in long-term sediment studies with short flow records. 
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INTRODUCTION 

 

The Arghandab River, and the irrigation systems built around it, made agriculture possible in 

arid southern Afghanistan, and are responsible for most of the region’s economy (CID, 2008). 

The river supports subsistence agriculture in the Arghandab valley with water from mountain 

snow. Snow-melt hydrology is episodic, so converting it into reliable irrigation requires storage. 

The Arghandab reservoir, impounded by Dala -am, the second largest in Afghanistan, storing the 

episodic snow-melt regime and releasing predictable flows required for agriculture and 

irrigation. However, the mountainous, unvegetated watershed delivers unusually high sediment 

loads, filling 45% of the reservoir’s capacity since the dam closure in 1952. As reservoirs fill 

with sediment, water storage is reduced and they lose the capacity to buffer communities against 

either floods or droughts. Storage lost to sediment increases the risk that water demand in dry 

years will not be met, which could have devastating social impacts on downstream agricultural 

communities. 

 

The U.S. Army Corps of Engineers Omaha District and Hydrologic Engineering Center built 

hydrologic, hydraulic, and sediment models of this system to estimate the reservoir lifecycle and 

predict sedimentation effects on future drought vulnerability.  The models also evaluated three 

spillway raise proposals and the influence these would have on reservoir life and future drought 
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risk on these estimates. The sediment modeling encountered two obstacles common in reservoir 

sediment transport modeling, equifinality and hydrologic uncertainty. The study documented 

approaches to: 

 

1. Negotiate equifinality with a three-stage process of sediment calibration. 

2. Quantify hydrologic uncertainty with stochastic analysis featuring hybrid time series 

including historical and synthetic hydrology. 

 

These approaches to these common problems could inform and improve similar future work. 

 

THREE-STAGE SEDIMENT CALIBRATION PROCESS 

 

“Equifinality” - multiple parameter combinations can produce the same calibration results -is a 

challenge for any multi-parameter modeling problem (Beven, 1993; Pappenberger et al., 2005). 

Calibrating models with multiple, sensitive, uncertain parameters introduces non-unique 

solutions.  Multiple parameter combinations can produce the same model result, reducing the 

confidence in the calibration and increasing the uncertainty of predictive results. Ordering free 

parameters by sensitivity and confidence can isolate the most important parameters (Ruark, 

2011; USACE, 2014), those that are both sensitive and uncertain, but sediment models still often 

require multi-parameter calibration. Because sediment data are usually rare, sediment load 

magnitude and gradation are usually mostly uncertain.  This is true in Western systems, but 

especially in regions of conflict like Afghanistan. 

 

Evaluating a model against multiple, independent, calibration time windows (i.e. calibration-

validation, though the terminology and methodology are controversial) is the classical approach 

to mitigate equifinality (e.g. Shelley and Gibson, 2015). However, in the absence of multiple 

calibration time-series, comparing results to several different prototype measurements over a 

single calibration window can help modelers negotiate non-unique calibration problems, 

converging on more robust models. 

 

In an analogy of the n-equation solution to n-variable problems of more elegant mathematical 

systems, numerical calibration can mitigate equifinality with a multi-stage calibration approach, 

evaluating a multi- parameter calibration against multiple prototype measurements. In this case, 

two sensitive and uncertain parameters were estimated in a three-step calibration process. 

 

Sediment calibration should always follow hydraulic calibration (HEC, 1993; Thomas and 

Cheng, 2007; e.g. Shelley and Gibson, 2014).  Sediment models depend on good hydraulic 

calibration, as sediment results are highly sensitive to hydraulic parameters like bed roughness. 

Hydraulic calibration could be considered an additional stage to calibrate a third uncertain 

parameter (n-value). When possible the hydraulic calibration should be followed by a robustness 

analysis to test numerical stability, (HEC, 1993; Thomas and Cheng, 2007) though 

fundamentally non-equilibrium problems, like reservoir deposition, make the robustness concept 

difficult to apply. 

 

After hydraulic calibration, the sediment calibration Arghandab Reservoir for the progressed 

through three stages, calibrating two free parameters by comparing model results to three 



prototype measurements over a single calibration window (Table 1). 

 

Table 1 Uncertain/sensitive model parameters and the prototype measurements used to estimate 

them. 

Estimated Parameters  Evaluation Measurements 

1.  Load Magnitude 1. Total sediment volume 

2. Load Gradation 2. Longitudinal sediment distribution 

 3. Longitudinal bed gradation trend 

 

1. Total Sediment Volume: Calibrating Load Magnitude 

 

Most reservoir sediment models specify boundary sediment loads with flow-load rating curves. 

Even when the data to develop flow-load curves are available, scatter around a selected curve 

often span one- to-two orders of magnitude, making the flow load relationship a common 

calibration variable. 

 

Mort et al. (1973) measured transects of the reservoir along historical, as-built cross sections, in 

1971.  A few years later data series end because of regional conflicts. These measurements 

created a 19-year calibration window that aligned with continuous upstream flow and reservoir 

stage data. 

 

 
 

Figure 1 HEC-RAS cross section stations (red numbers) associated with the corresponding 

Mort et al. (1973) transects. 

 

An as-built HEC-RAS model was constructed with the 1952 cross sections and run over the 

calibration period. Sediment volume change results were compared to the 89 million m3 

deposition computed from the Mort et al. (1973) transects. The flow-load curve was adjusted 

until the model reproduced the total observed deposition volume. Results were compared to a 

few available load measurements and other regional flow-load curves. 

 

2. Longitudinal Sediment Distribution: Calibrating Load Gradation 

 

Most sediment transport models require sediment boundary conditions by grain class. Therefore, 

two uncertain parameters are wrapped up in the sediment load boundary: magnitude and 



gradation. While load magnitude data are rare and noisy, load gradation data are usually even 

more uncertain, based on fewer and more erratic measurements. 

 

In depositional environments however, load gradation can be calibrated to the longitudinal 

distribution of the deposits. Reservoirs sort sediment longitudinally by gradation and models use 

fall velocity to simulate that sorting relatively precisely (relative to the uncertainty in other 

transport algorithms). Therefore, once the total load is established with the flow-load curve, the 

gradational distribution of the inflowing loads can be adjusted to fit the longitudinal trend. 

 

In the Arghandab model, load gradations were adjusted until the Arghandab HEC-RAS model 

re-created volume change at each location (Figure 2). This step sometimes requires feedback 

with the total volume analysis (Section 3.1), because moving mass to finer grain classes (e.g. 

clay or very fine silt) to induce deep pool deposition with trap efficiencies <100%, can reduce 

the total sediment mass deposited, requiring adjustments to the magnitude of inflowing loads. 

However the modeled trap efficiency and sediment releases through the dam should be checked 

against actual reservoir release concentrations, to verify that the estimated fine components are 

justified. 

 

 
Figure 2 Computed and measured longitudinal volume change. Bed change at each cross section 

in the Arghandab reservoir between 1952 and 1971. The gradation of the upstream load 

boundary was adjusted to fit the computed result to the measurements. 

 

3. Gradational Trend: Check and Update Load Gradations 

 

Finally, the calibration was checked against bed gradations and updated accordingly. This could 

be considered a single-time-series analogy “verification,” but verification terminology is 

controversial (Oreskes et al., 1994; Rykiel, 1996; Gibson, 2013), and production level models do 

not simply “fail” verification, but use the new data to update parameterization to produce the best 

final model possible. 

 

Gradations were extracted from HEC-RAS calibration results and compared to a handful of 1973 



bed gradations (Figure 3). Both the model and prototype gradation data must be interpreted 

carefully in this comparison. Computing gradational evolution results from active layer sediment 

models (like HEC- RAS) can be challenging. Cover layer gradations in HEC-RAS are a function 

of layer thickness, which are sometimes confounded by non-linear mixing dynamics. Especially 

detailed, multi-layer Lagrangian mixing methods like the Thomas and Copland methods (Exner 

5 and 7 respectively in version 4.1) in HEC-RAS (which are required to develop and maintain 

the armor layers in the upper reach of the model), often reset cover gradations, making the 

surficial gradations at any time step stochastic, evolving non- monotonically. 

 

Therefore, “computed gradations” were extracted from “total mass change” results, which 

develop more consistently. Because reservoir deposition is mainly monotonic, gradations can be 

computed from the depositional mass. This approach integrates vertical gradations in the deposit, 

extracting finer model gradations than the surficial prototype samples. As a reservoir delta 

progrades, finer material deposits deep in the reservoir, at the toe of the delta.  Later, coarser 

deltaic deposits cover these deep, fine, materials. Reservoir sediment samples tend to collect the 

coarser, surface materials. The Arghandab model produced this result as the measured total-

deposit gradations were coarser than the computed deposits (Figure 3). 

 

Despite these complexities in comparing computed gradations of the active layer against surficial 

measurements, the comparison provided an independent evaluation of the model to mitigate 

equifinality uncertainty. Calibrating the model against three observations increased confidence 

and mitigated uncertainty in predictive results. 

 

 
Figure 3 Computed and measured bed gradations for the 1952-1971 calibration of Arghandab 

reservoir deposition. Computed, vertically integrated, deposits are finer than the surficial 

measurements, as expected, but the trend “validates” load gradation calibration. 

 



QUANTIFYING PREDICTIVE HYDROLOGIC UNCERTAINTY FOR SEDIMENT 

MODELS 

 

Most reservoirs operate based on upstream and downstream flow gages, which provide good 

historic flow data for sediment models. Therefore sediment parameter uncertainty, confounded 

by limited data and scatter when data are available, usually overshadows historic flow 

uncertainty. However, when sediment analyses move from historic to predictive simulations, 

hydrologic uncertainty can dominate in a well-calibrated reservoir sediment model. Sediment 

transport is a non-linear function of flow, making projected deposition, reservoir life cycle, and 

future drought or flood protection heavily dependent on the flows in the following decades, 

particularly the frequency and timing of large events. 

 

Historically, predictive sediment models have either ignored hydrologic uncertainty, by simply 

repeating historical records, or collapsed historical records into “representative years,” 

sometimes augmented with probabilistic flows, that are repeated for every year of the simulation. 

 

These approaches have limitations, however. Reservoir life cycles depend largely on the 

unknown time- series of future hydrology, so a repeated time-series will only predict the future 

(or even simulate a probable future) if it does not over or under predict flood frequency. 

Repeating the historical record can be particularly problematic in a system like Arghandab, 

where the regional history left a hydrologic record of only 28 years, and anecdotal evidence 

suggests that the ungaged records include much larger flows than those included in the measured 

time-series (Needham, 2006). Additionally, bed response to large events depends on their timing, 

sequence, and temporal relation to other events. A 1% event, five years into a simulation, may 

affect the system very differently than the same event in year 45. 

 

Synthetic hydrographs of future conditions were developed to quantify hydrologic uncertainty in 

the Arghandab study. These stochastic hydrologic time-series were developed from a 

combination of 1) historical annual flow series and 2) synthetic flow years. 

 

The HEC Statistical Software Package (HEC-SSP) (Brunner and Fleming, 2010) ordered the 

historic annual time-series and associated each with an exceedance probability based on peak 

seven-day flow volumes with a Log-Pearson III distribution (Figure 4). Each historical annual 

flow record was assigned a range of probabilities surrounding its plotting position. The ordered 

peaks had an “S-shaped” alignment, however, so the right half of the data (larger than average 

flows) had a prominent negative skew. Negative skew makes the log normal distribution (i.e. 

LPIII with zero skew) over predict high flows, so historical flow series were scaled to align with 

the flow at the corresponding position on the flow-frequency curve. For example, the 1954 flow 

record was assigned probabilities between 0.33 and 0.365 (based on where it plotted on the flow-

frequency curve) and high flows were multiplied by a scaling factor of 0.94 to bring the seven-

day volume in line with the log normal distribution. 

 



 
Figure 4 Volume frequency analysis for the gage upstream of Arghandab Reservoir (September 

1951 to Mar 1979). 

 

When using plotting positions, a 6% exceedance probability is assigned to the largest historical 

flow. Rarer events (5%, 2%, 1%, 0.5%, and 0.1%), were constructed by scaling a regularly 

shaped, single peak, historic “model” hydrograph (Water Year 1965) into synthetic, low-

frequency flood events. The flood season flows of the model hydrograph were scaled by the ratio 

of the peak flow (computed in a separate HEC- SSP analysis) to the 1965 peak (Figure 5).  

Twenty, 50-year, synthetic flow series (1,000 total flow  years) sampled these historic and 

synthetic annual time-series (Figure 6) with a random number generator, including nine 1% 

events, two 0.5% (200 year) events, and one 0.1% (1,000 year) event. 

 

The HEC-RAS sediment model (with estimated contemporary bathymetry) simulated 50-year 

futures including a no-action alternative and three proposed spillway raises, by repeating the 

historic time-series and each of the twenty stochastic time-series for each of the four alternatives. 

Final bed elevation profiles for the three alternatives and no-action condition with the repeated 

historic record are plotted in Figure 7. However, the stochastic hydrologic analysis made it 

possible to compute and communicate the potential range of results hydrologic variability could 

produce. In Figure 8, the 50-year reservoir storage volume computed from the analyses in Figure 

7 are plotted with results from the stochastic simulations, placing the repeated historic time-

series results in the context of its hydrologic uncertainty. 

 



 
Figure 5 Synthetic annual flow series, low probability flows, larger than those observed during the 32 year 

flow record, constructed by scaling the 1965 event to the 7-day probabilistic volumes computed by HEC-

SSP. 

 

 
Figure 6 Twenty synthetic flow series used to quantify hydrologic uncertainty. 

 

 
Figure 7 Predicted 2065 reservoir bed elevation (thalweg) for the existing structure and three alternatives, 

plotted with the initial (2015) profile. 



 

 
Figure 8 The final water volume (in 2065) beneath the original spillway elevation (1135.4 m) for 

the predictive simulation (red dot •), simulations based on random 50-year hydrologies (blue 

diamonds ) and the average of the random simulations (red square ). 

 

RECENT DEVELOPMENTS 

 

Customized code generated stochastic hydrologic time-series in this study. Since then, HEC has 

developed unsteady sediment transport capabilities in HEC-RAS (Gibson and Boyd, 2014; 

Shelley et al., 2015) and automated time-series sampling in the HEC-WAT (Dunn and Baker, 

2010). Combining these capabilities automate sediment model hydrologic uncertainty analyses, 

like the one described above. 

 

HEC-WAT creates time-series from historic and synthetic annual time-series like those depicted 

in Figures 5 and 6, and automatically launches HEC-RAS sediment simulations with each 

realization automatically. These developments will simplify hydrologic uncertainty for sediment 

models. 

 

CONCLUSIONS 

 

The uncertainty surrounding sediment models can reduce their utility and is sometimes cited as a 

reason to forgo modeling that could add value by reducing uncertainty. Good calibration against 

multiple time-series, or in their absence, against multiple measurements, can reduce model 

uncertainty to acceptable levels. However, the uncertainty associated with sediment transport 

model results is a fundamental characteristic of the analysis. Providing results with explicit 

uncertainty analyses puts results in the context of the project risk portfolio and provides the 

range of probable outcomes. 
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