
STORM: A MODEL FOR 2D ENVIRONMENTAL HYDRAULICS

Francisco J.M. Simões, US Geological Survey, Geomorphology and Sediment Transport
Laboratory, Golden, CO 80403, frsimoes@usgs.gov

Abstract: A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow
over complex topography is presented. The model, SToRM, is based on an unstructured cell-centered finite volume
formulation and on nonlinear strong stability preserving Runge-Kutta time stepping schemes. The numerical
discretization is founded on the classical and well established shallow water equations in hyperbolic conservative
form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes.
Computational efficiency is achieved through a parallel implementation based on the OpenMP standard and the
Fortran programming language. SToRM’s implementation within a graphical user interface is discussed. Field
application of SToRM is illustrated by utilizing it to estimate peak flow discharges in a flooding event of the St. Vrain
Creek in Colorado, U.S.A., in 2013, which reached 850 m3/s (~30,000 f3/s) at the location of this study.

INTRODUCTION

Current climate change science and research predictions, such as those identified in the recent Intergovernmental Panel
on Climate Change report (IPCC, 2014), indicate the hazards of flooding and their detrimental impacts are becoming
more frequent and likely to increase. The need to cope with flooding effects—such as floodplain regulations,
insurance, mitigation engineering works, and emergency preparedness—requires tools that can be used to provide
accurate predictions of flood timing, duration, and extent. A numerical flow model that solves the shallow water
equations (SWEs) and simulates the hydrodynamics of a wide variety of surface flows will be a significant asset in
the gamut of tools available to engineers, managers, and decision makers involved in floodplain management. Such a
model needs to be accurate, robust, efficient, and be available in a computer environment that facilitates data
processing and analysis to reduce project turnaround time.

Moreover, the increased availability of high accuracy digital terrain models (DTMs) over large extents (tens to
hundreds of square miles, or more) have created the demand for models that can be used to address inundation events
at those scales. These DTMs are often created using remotely sensed terrain data (e.g., Light Detection and Ranging
(LiDAR) or interferometric Synthetic Aperture Radar (ifSAR)) with typical horizontal resolutions of 1 m that retain
very detailed features, such as individual buildings and roads. Simulating surface flow with this type of spatial
accuracy can only be done at high computational cost, requiring computer systems that can accommodate the vast
amounts of data in memory and that have fast numerical processors.

In the past decade, Godunov-type schemes using a finite volume formulation have become popular for solving the
SWEs (Toro and Garcia-Navarro, 2007; Vazquez-Cendon et al., 2013). This can be attributed to the ability of these
schemes to deal with the most complicated shallow water phenomena, such as hydraulic jumps, flow regime change,
and the wet-dry interfaces encountered in fast moving catastrophic flooding flows. SToRM (System for Transport and
River Modeling) is a model that employs these techniques in two-dimensional (2D) unstructured grids (Simões, 2011),
and that is contained in a graphical user environment that provides a number of tools to expedite its use by trained
operators.

The purpose of this article is to provide a brief presentation of the computer model SToRM and to explore the use of
parallelism to improve computational efficiency in the setting of a desktop workstation. The following sections will
present the governing equations and computation methods used to develop the numerical model; how parallelism is
employed to move from a single- to a multi-threaded computing environment; and SToRM’s implementation in a
graphical user interface. Finally, to illustrate the methods in a problem of practical and recent significance, SToRM is
applied to estimate peak flood flow rates in a section of the historic flooding that occurred in St. Vrain Creek, Colorado,
in September of 2013.

MODEL FORMULATION

SToRM is based on the classical SWEs written in the conservative form (Chaudhry, 1993):

() ()

t x y

¶ ¶¶
+ + =

¶ ¶ ¶

F U G UU
S(U) (1)

 ()
()

2 2
0

2 2

0

0

, / 2 , ,

/ 2
x fx

y fy

h hu hv

hu hu gh huv gh S S

hv huv hv gh gh S S

é ù
é ù é ù é ù ê ú
ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú= = + = = -ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú+ë û ë û ë û -ê úë û

U F G S

where t is time, h is the water depth, g is the acceleration due to gravity, u and v are the depth-averaged flow velocities
in the x and y Cartesian directions, S0 is the bed slope, and Sf is the bottom friction. Integrating equation (1) over a
standard control volume Ω and applying the divergence theorem results in

 ()d ds d
t

W ¶W W

¶
W+ ⋅ = W

¶ ò ò òU E n S (2)

where E = (F,G)T and n is the outward-pointing unit vector normal to the control volume boundary ∂Ω. SToRM is
based on the numerical integration of equation (2) over cell-centered, non-overlapping triangles:

3

1

i i
ik ik i i

k

l
t =

¶W
= D + W

¶ åU
E S (3)

In equation (3), Ui are the average values of the conserved variables over triangle i, Eik are the inviscid fluxes through
triangle edge k, Δlik is the length of edge k, Si contains the source terms, and Ωi is the triangle’s area.

Following the principles of Godunov-type methods, the inviscid fluxes Eik are numerical fluxes arising from a local
Riemann problem at each triangle edge. Here, Eik are computed using Roe’s flux function at those edges (Roe, 1981):

 () ()1

2ik ik ik ik ik
+ - + -é ù= + - -ê úë ûE E E Γ U U

where the ‘+’ quantities are reconstructed at the midpoint of the edge k using data from control volume i and the ‘-‘
quantities are reconstructed using data from the adjacent control volume. In SToRM, the up-winding factor Γ can be
computed in one of two manners: (1) as in the algorithm of Alcrudo and Garcia-Navarro (1993) or (2) by using
Rusanov’s (1961) numerical flux. The first approach is more computational demanding (i.e., it requires more computer
number crunching), but it has the shock capturing properties needed to compute the flow at discontinuities such as
hydraulic jumps and wet-dry fronts, whereas the latter is computationally much simpler and less demanding, but may
introduce spurious numerical diffusion into the solution. The decision of which to use is done at each triangle edge: if
|h+ – h-|/Max{h+,h-} > δs then Alcrudo and Garcia-Navarro’s method is used, otherwise Rusanov’s method is used. A
threshold value, δs, is used to detect discontinuity across element edges and is usually set to 0.1%, a value found by
numerical experimentation.

Second-order accuracy is achieved using a piecewise linear model for the cell variables with the usual MUSCL
(Monotonic Upstream-Centered Scheme for Conservation Laws) reconstruction, with limiting to enforce
monotonicity near sharp gradients and discontinuities of the dependent variables. The continuously differentiable
limiter by Venkatakrishnan (1995) is chosen because it avoids introducing discontinuities to the computation of the
reconstructed function and, consequently, to the fluxes, therefore improving the convergence properties of the solver
over other commonly used discontinuous limiters. Computation of the gradients is accomplished with a second-order-
accurate least-squares technique conditioned by the use of inverse distance weighting.

The friction terms are discretized in a semi-implicit manner:

 ,
1 / 1 /

n n
xi yin n

xi yin n n n
fxi i fyi i

q q
q q

g tS u g tS v
= =

+ D + D
 (4)

where qx = hu and qy = hv are the components of the unit discharge, the superscript n refers to the time step, and the
underlined variables are frictionless-computed quantities. This discretization avoids numerical oscillations in regions
of high friction and low water depth, such as in wet-dry fronts, and impacts positively the conditional stability limits
of the time-stepping method mentioned in the next paragraph.

The solution is advanced explicitly in time using nonlinear Strong Stability Preserving Runge-Kutta (SSPRK)
schemes, also known as Total Variation Diminishing (TVD) Runge-Kutta schemes (Gottlieb et al., 2001). This is done
by first rewriting the governing equations, equation (3), as a coupled system of ordinary differential equations:

 (), ; , 1, 2,3i
i i

q
R u v t i

t

¶
W = =

¶
 (5)

where Ri is called the residual. Here, a simplified form of the SSPRK schemes is used, in which a m-stage SSPRK
method for equation (5) is written in the form

 ()

(0)

1
() () (1)

0

1 ()

, 0, 1,...,

n

i
i j i

ij i ij
j i

n m

u u

t
u u R u i m

u u

-
-

=

+

ìï =ïïï Dïï = a +b a ³ =íï Wïïïï =ïî

å (6)

where Δt is the time step size, the superscripts n and n + 1 denote the time level, and the parenthetic superscripts
denote the Runge-Kutta level. The coefficients α and β are chosen to meet desired criteria. SToRM implements three
optimal (in the sense of the Courant-Friedrichs-Lewy CFL stability coefficient θ) SSPRK schemes: first order (m =
1), second-order (m = 2), and third-order (m = 3). Note that these schemes are all subjected to the same stability
criterion and have an upper bound for θ.

Boundary conditions are applied at the edges of the model grid using Riemann invariants, i.e., the boundary fluxes are
also computed by solving a Riemann problem between the interior states and the “ghost” states outside the
computational domain. These “ghost” states are introduced in order to compute the boundary fluxes in a similar and
consistent way to the interior fluxes. Here, an approach identical to that of Anastasiou and Chan (1997) is used for
solid walls, inflow, and outflow boundaries. However, wetting and drying fronts require a separate treatment.

Wetting and drying occurs not only during the propagation of floods, but also at the edges of any body of water. Thus,
the dry-wet front constitutes not only a propagation problem, but also a static boundary condition problem, because it
defines the shoreline. It is not easy to include these effects in a straightforward manner in a numerical code and most
researchers resort to different degrees of approximation. Advancing wet-dry fronts are treated with the method of
Brufau et al. (2002), which uses a numerical flux that can be applied to zero-depth cells and that maintains the C-
property1. The key concept is that the fluxes at the advancing front must be determined from the wet side of the front:
the velocity at the cell boundaries separating wet and dry states is determined from the wet side, and the interface flux
only uses the information coming from the wet side. This procedure allows including wetting and drying fronts in the
ordinary cell flux computations without requiring the artificial wetting of dry cells. Drying fronts pose the additional
problem that, during a drying time step, negative water depths may be reached. Mass conservation requires that the
time step should be restricted to the value that corresponds to the time that takes the cell to dry out, i.e., to reach hi =
0. SToRM performs additional checks and adjustments to ensure that mass is conserved at every time step without
imposing these constraints to the time step size. These checks and adjustments are presented with greater detail in
Simões (2011).

1 A numerical scheme that preserves exactly initial solutions of a steady state lake at rest is said to verify the C-
property.

The shoreline treatment is different from the two preceding cases. A shoreline is defined when all the surrounding dry
triangles of a partially or fully wet control volume have a mean bed elevation higher than the stage at the centroid of
the triangle. Under this circumstance the shoreline is defined at the control volume edges and is also subjected to a
special treatment. Partially wet triangles have corrections applied to their wetted area and water depth. The treatment
is different whether drying or wetting is occurring. The interested reader is referred to Simões (2011), where detailed
descriptions and validations of the methods are presented.

PARALLEL IMPLEMENTATION

SToRM was developed using the programming language Fortran 90/95 using the traditional instruction-driven SISD
(Single Instruction, Single Data) computing model, where a single processor executes one instruction stream that
operates on data stored in the same memory as the instructions. The algorithms and techniques used were essentially
sequential in nature. The programming style, however, was modular and the use of a code profiler (Intel® Parallel
Studio XE 2013 was used) permitted to clearly identify regions of the program that consumed the most central
processing unit (CPU) run times and, from those, the sections of the code that were the best candidates for
parallelization. These sections were then targeted for treatment, with two development criteria: (1) the parallel code
must give identical results to its sequential version, and (2) there must be a reduction in computing run time over the
original code.

The hardware tools available for the development of this project consisted of a desktop computer with dual Intel®
Xenon® E5-2630 v2 CPUs running at 2.60 GHz, 16 GB of RAM, and using the Microsoft® Windows® 8.1 64-bit
operating system. Each of the CPUs contains 6 cores and 12 threads, making a total of 24 threads available to the user.
The graphics capabilities were provided by a NVIDIA® Quadro® K600 graphics processing unit (GPU) with 1 GB
of memory and 192 CUDA2 cores. The GPU supports several graphics and compute APIs (Application Program
Interfaces), such as OpenGL 4.4, DirectX 11, CUDA, and OpenCL. The software tools used consisted in the group of
programming applications available in the Intel® Parallel Studio XE 2013 software package (see
https://softare.intel.com for the latest version available).

Parallelism can be achieved in a number of ways, but this project was restricted by the hardware described above and
by keeping the code development efforts limited to relatively short times. Furthermore, there was the desire to use
standard, high-level programming tools to achieve maximum portability to different hardware platforms and operating
systems. Given the possibility of using the programmable graphics hardware as a general-purpose computing machine,
both the GPU and the CPU can be used to reach these goals.

GPUs provide an attractive platform for parallel application development because most modern computers include
programmable GPUs that have a floating point computational power that typically is more than one order of magnitude
higher than comparable CPUs. Additionally, because GPUs have a more scalable architecture, their power is expected
to grow considerably faster than the computational power of CPUs. Hagen et al. (2005) have developed a GPU-based
numerical model of the SWEs with explicit time marching schemes. They achieved a speedup of more than one order
of magnitude over using the CPU alone, and showed that the GPU can be used as an inexpensive alternative to high-
performance computers. Interestingly, the number 2 system in the Top500 supercomputers (TOP500 Supercomputing
Sites, available at http://www.top500.org/, accessed January 2015) in November 2014, which was the latest published
list at the writing of this article, uses NVIDIA GPUs to accelerate computation. Unfortunately, GPUs are based on the
SIMD (Single Instruction, Multiple Data) computing model, which is significantly different from the SISD model
used in SToRM. In the SIMD model, the processor is first configured with the instructions that will be executed, and
then the data stream is processed. In other words, SToRM was developed based on an instruction driven model, while
GPU programming requires a stream processing model. These differences require substantial changes to the
fundamental algorithms already developed and implemented in SToRM and place an onerous burden in code
redevelopment and debugging.

There are other more attractive approaches to parallelism that maintain the same SISD programming paradigm and
that constitute established standards and, therefore, are portable across a large spectrum of machines. Two established

2 CUDA stands for Compute Unified Device Architecture. It is a parallel computing architecture developed by
NVIDIA.

standards supported in the Intel® Parallel Studio XE 2013 application development environment are Intel® MPI
(Message Passing Interface) and OpenMP (Open Multi-Processing). MPI is a distributed memory multi-processor
system in which each processor has its own private memory. The processors are interconnected and can communicate
among themselves, therefore the efficiency of communication is very important for good performance. An important
realization of such a system is given by computer clusters that may contain hundreds or thousands of individual
computational nodes. At the time of this writing, the number 1 system in the Top500 supercomputers list is a cluster
of 3,120,000 Intel® Xeon® E5-2692 CPUs, with a peak computing of near 55,000 TeraFLOPS (floating-point
operations per second). Sanders et al. (2010) have presented a parallel flow model for flood inundation computations
on unstructured grids. They used several different sized clusters and achieved high rates of efficiency in all. Their
approach, however, depends on load balancing to a high degree, i.e., on the manner in which the computational grid
is partitioned among the multiple nodes of the cluster. The key to achieve a good partitioning is to subdivide the grid
into subdomains with equal computation workload while sharing the least amount of data. Alas, partitioning is a
computationally expensive task and is typically done only once and at the start of the computer run. Flooding, however,
is an intrinsically transient phenomenon, therefore a dynamic load balancing—where all cluster nodes have to process
the same number of wet and dry cells during the flooding event—is required to maintain an optimum balance. A very
efficient algorithm is needed in order to minimize the computational overhead associated with recomputing the load
balance and retransmitting the appropriate data to all the cluster nodes during the flooding process. Developing such
an algorithm is very difficult and time consuming, and was outside of the scope of the current project.

The MPI paradigm described above is an example of coarse-grain parallelism, where parallelism in a program is
achieved by decomposing the target domain into a set of subdomains that are distributed over the different processors
of the machine. OpenMP, on the other hand, is an example of fine-grain parallelism, in which parallelism in a program
is achieved by distributing the work of the DO-loops among the different processors, such that each processor
computes only a portion of the loop iterations. Given that the most computationally-intensive segments of the code in
SToRM are done in DO-loops, OpenMP was chosen as the most suitable choice of technique to achieve the desired
goals.

OpenMP is an API for writing multithreaded (MT) applications that consists of a set of compiler directives, library
routines, and environment variables. It greatly simplifies the development of MT applications in Fortran, C, and C++.
It assumes the hardware provides a shared memory workspace with equal-time access for each process (thread), and
that the OS treats every process the same way: it is a SMP, or Symmetrical Multiprocessor architecture. OpenMP,
however, also provides a way to directly access the cache associated with each thread, allowing the user to take
advantage of this faster type of memory when developing parallel code. This type of system architecture is very similar
to the hardware configuration of modern Intel® CPUs, which can be a significant advantage for the OpenMP user.

The approach followed to add parallelism to the computer code SToRM was to use the code profiling tools in Intel®
Parallel Studio XE 2013 to identify the segments of the code that consumed the most computer resources (i.e., those
which were responsible for the largest portions of the total computer run times) and target them for parallelization
using OpenMP. Figure 1 shows a schematic flow chart of the tasks in SToRM and provides a synoptic view of the
regions that were parallelized.

Some sections of the code were straightforward to parallelize using OpenMP. These included variable interpolations
and computations of the numerical gradients, operations which essentially are dot products and have no data
dependencies. Computing the source/sink terms and friction terms was also an easy task, but some algorithmic changes
had to be made in order to use thread cache more effectively. Dealing with the computation of the fluxes at cell edges
involved the most work. SToRM uses an edge-based data structure which potentially leads to codes with reduced CPU
and memory access overhead when compared to codes that use a more traditional element-based structure. However,
in multithreaded programs that share the same variables simultaneously, race conditions may appear3. Thread
synchronization must be used to avoid race conditions. Thread synchronization facilitates organized and disciplined
access to shared data at the expense of overall code performance, therefore it must be used with caution and algorithms
must be well designed to minimize the synchronization that must be done.

3 Race conditions are situations where one thread updates a variable needed by another thread before the second
thread has a chance to use it.

Figure 1 Flow chart of SToRM. Areas in gray represent parallel code. Operation flow is from top to bottom.

In SToRM, different types of edges are classified and distributed to different, independent computational loops (dry
edges, fully wet edges, partially wet edges, solid boundary edges, inflow and outflow edges, advancing front edges,
receding front edges, and bank shoreline edges). The main solution cycles over the edges and the residuals are summed
by scattering (anti-symmetrically) the fluxes to the control volumes sharing the edge. The use of different cycles for
different types of edges allows elimination of data dependencies and results in highly optimized code in vector-parallel
computers.

At the writing of this paper, certain parts of the code remain to be parallelized. These concern sections that are more
complex algorithmically, or that are treated directly by the Fortran language. An example of the latter case is
initialization of arrays to zero: in Fortran, a multidimensional array is initialized to zero by the simple construct
“AnArray = 0”, where AnArray is an arbitrary user-defined array. The details of how this type of memory
initialization is done are privy to the compiler and hidden from the user, but an analysis of the code efficiency has
shown that this command does not seem to parallelize under the known compiler directives available to the user.
Further investigation is needed to address these issues. Sections dealing with data input and solution output have not
been parallelized.

GRAPHICAL USER INTERFACE

Integration of a numerical model within a graphical framework allows bridging the gap between model development
and model use, and encourages model dissemination and application. SToRM has been integrated in iRIC
(International River Interface Cooperative), a graphical user interface (GUI) framework developed specifically for
environmental flow modeling (http://i-ric.org/en/). The iRIC framework provides operational facilities that are model
independent, such as data input and output (multiple formats are supported), automatic grid generation (provided by
the two-dimensional grid generator and Delaunay triangulation package of Shewchuk, 2002), interactive visualization

and editing of model input and output, ability to work with ancillary data sets for model calibration, and device-
independent plotting.

A schematic view of how the SToRM model is integrated in the iRIC graphical framework is given in Figure 2. The
graphical user interface is used to receive user input and to plot data, communicating with SToRM through a device-
independent file using a format that has become a standard in many applications of computational fluid dynamics
(CGNS, see http://cgns.sourceforge.net/). SToRM runtime information can also be displayed in a console window.
The parameter definitions needed to customize the GUI to the specific requirements of a particular numerical model
are coded in a flat file in XML format (http://www.w3.org/XML/). This file defines custom entry screens that allow
the user to enter not only general numerical quantities (such as input file names, time step size, and number of time
steps, for example), but also unique parameters required by SToRM, such as the threshold δs to detect discontinuities
across element edges. The GUI can read data in a multitude of formats commonly used in hydraulics and other digital
elevation modeling applications. Entire SToRM set-ups, including computational grids, boundary condition data,
parameter definitions, and complete model simulation solutions obtained at multiple simulation times, can be saved
in single data files for later use, and for transmission and archival.

Figure 2 Schematic outline of the integration of SToRM in the iRIC modeling framework.

SToRM is implemented within the iRIC GUI and can be freely downloaded from the official iRIC Project Web Site
cited above. The calculations presented in this work were obtained using version 2.3 of the iRIC distribution package.

APPLICATION: ESTIMATING PEAK FLOODING FLOWS

In the week of September 9–15 of 2013, a slow-moving cold front clashed with warm monsoonal air over Colorado,
causing unusually heavy rain that resulted in catastrophic flooding along a large extent of Colorado’s Front Range.
Flooding conditions occurred along streams from Fort Collins in the north, to Colorado Springs in the south over an
area that extended for approximately 320 km (200 miles). Nearly 19,000 homes were damaged, with over 1,500
destroyed, and more than 11,000 people had to be evacuated, with eight dead and two more missing and presumed
dead. It is estimated that at least 30 state highway bridges were destroyed and an additional 20 seriously damaged,
with many miles of roads and freight and passenger rail lines significantly damaged or altogether washed out.
Estimates of economic losses have surpassed $2 billion USD (Novey, 2013).

Due to the high discharges and water depths that occurred in many of the affected streams, some of the US Geological
Survey gaging stations were submerged or completely destroyed, precluding direct measurement of river stage at those
locations. Such was the case at the confluence of the St. Vrain Creek and Boulder Creek near the city of Longmont,
northwest of Denver, CO. The recurrence interval of this flood for the Boulder Creek watershed ranged mostly
between 4% (25-year) and 2% (50-year) annual chance event (CH2M HILL, 2014), and between 1% (100-year) and
0.2% (500-year) annual chance event for the St. Vrain Watershed (JACOBS, 2014). As a result of high flows, the
USGS Gaging Station 06725450 (http://waterdata.usgs.gov/co/nwis/uv/?site_no=06725450), located at St. Vrain
Creek at Highway 119 (HWY 119) below Longmont, was destroyed and failed to record the stage at the peak of the
flood. No high water marks were collected at this location during the later forensic work related to this flood, therefore
preventing the realization of an indirect measurement of the peak flow. A replacement gaging station (06730525) St.
Vrain Creek below Boulder Creek at HWY 119 near Longmont (http://waterdata.usgs.gov/co/nwis/
uv/?site_no=06730525), was installed near the same location as the destroyed gage (Mark Smith, USGS, Personal

Comm., March 2014). This section describes the application of SToRM to estimate the peak discharge passing at the
gaging station and over HWY 119, which had a section over 1.7 km (1 mile) under water.

The data sets available for this work consist of topographic data and flood delineation data. The topography was taken
from USDA Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/), which is from pre-flood (2008) USGS
national elevation data (NED) at 1/9 arc-second resolution, i.e., with a spatial resolution of 3 meters. There was no
post-flood LiDAR data for the site at the time of this study. The topographic data were used to generate a DTM for
use by SToRM. Flood delineation data were obtained from remote sensing and were available as breaklines containing
the discretized delineation of the flood extents in the area of interest (Chris Cole, USGS, Personal Comm., April 23,
2014). The model was set up to represent an area of 5 km (3.1 miles, east to west) by 4.5 km (2.8 miles, north to south)
centered at the USGS Gaging Station 06730525, placing the model’s inflow boundaries about 2.5 km (1.6 miles)
upstream from the gaging station, and the outflow boundary 2.5 km (1.6 miles) downstream from it, as illustrated in
Figure 3. This design places these boundaries away from the area of interest, therefore insulating it from imprecisions
due to approximate representation of the water surface elevation at the downstream end, and of synthesized velocity
distributions at the upstream boundaries. The outflow boundary was set at St. Vrain Creek at Interstate 25, because it
is known that Interstate 25 was not flooded, and knowing that the flow was contained within the bridge opening
permitted setting the boundary condition (i.e., water-surface elevation under the bridge) close to that of the actual
flood, which is near the invert of the bridge.

Figure 3 Aerial photograph of the modeled region. The limits of the computational grid are given by the yellow
polygon shown. Note the inflowing tributaries at the south (Boulder Creek) and southwest (St. Vrain Creek) and the
outflow boundary at the northeast (St. Vrain Creek). The circle marks the location of the USGS Gaging Station. (Photo
source: USDA Geospatial Data Gateway.)

Surface roughness was approximated by judging the type of land use based on the analysis of aerial photography.
There are many land uses in the modeled region, including residential, commercial, agricultural, gravel mining, and
open space. Different roughness values were used to represent each, assigned from previous experience using SToRM
in similar land surface textures. Using aerial imagery, the computational domain was divided in areas of agricultural
land use (Manning’s n = 0.045), residential (n = 0.055), wooded areas in the riparian corridor (n = 0.065), ponds and
reservoirs (n = 0.015), and all other surfaces (n = 0.035).

To determine the value of the flow discharge at St. Vrain and Boulder Creeks, which is the objective of this study, a
series of runs of SToRM were carried out, each using an estimate of the flow rates for Boulder and St. Vrain Creeks.
In practice, a series of discharge guesses that under- and over-predict the answer were used to perform model runs.
The results of the model runs were compared to the known flood delineation contours and saved. A series of successive
trials gradually honed the answer to the pair of discharges that provided the best possible agreement between the
model predictions and the observations.

All model runs were carried out using the same spatial discretization. SToRM uses a spatial discretization based on
triangles and the user interface iRIC provides an automatic grid generator that takes into account user input. User input
is used to define grid shape and cell size, and is especially important in ensuring that topographic features of hydraulic
relevance are discretized with the appropriate accuracy for model representation. Several discretizations using
different grid resolutions were tried and the coarsest grid that provided the best computational performance without
degrading the quality of the computed flood extents contained 57,055 points (113,140 triangles), representing a grid
of triangles with a maximum area of 173.2 m2 (1864 ft2) each. The grid was selectively refined in certain regions, such
as near the gaging station, and break lines were used to capture a number of significant terrain features.

Each run was started from an initial state in which there was little or no flooding taking place: the water was mostly
confined within channel banks and the discharge was low, with an initial discharge of about 8–10 m3/s (282.5–353
ft3/s) for each creek. The model run progressed in an unsteady manner, where the inflows at St. Vrain and Boulder
Creek were ramped to the estimated values and the computational domain was allowed to flood as if a flooding event
was taking place. Similarly, the many ponds present in the computational domain (clearly visible in Figure 3) were
started from a dry state and allowed to fill during the ramping of the hydrograph. Once the hydrograph attained the
desired high inflow discharges, the run was sustained until steady state conditions were reached. This process does
not represent the rate of flooding accurately, because the inflow hydrographs used do not represent the actual flooding
event well, but it allows for the model to compute the actual flood extents without the need for any preconceived ideas
about what the flood stages should be. In this study, the combination of values that provided the best agreement
consisted of a discharge of 600 m3/s (~21,000 ft3/s) for St. Vrain Creek and a discharge of 250 m3/s (~9,000 ft3/s) for
Boulder Creek, resulting in an estimated 850 m3/s (~30,000 ft3/s) passing through USGS Gaging Station 06730525 at
HWY 119. The final results comparing model simulation and known flood delineation contours are shown in Figure
4.

Naturally, the predicted values of the previous paragraph are dependent on the accuracy of the data used: (1) the DTM
data used by the model were sourced from USGS NED with a RMSE of 0.05–0.2 m in elevation (0.154–0.656 ft), and
was 5 ½ years old at the time the flooding occurred; and (2) the flood delineation contours are subject to uncertainties
in areas of visual complexity and the source images must be obtained at peak flow, which may be an unknown by
itself. Finally, the comparison between model predictions and field measurements was done by visual inspection,
which introduces undesired operator ambiguity and underlines the need for the development of mathematical criteria
that produce objective goodness-of-fit measures and that can be implemented in an automated computational
procedure.

The computational approach described above is very demanding in computer resources, because of the number of
triangles in the spatial discretization and because of the small time step used (Δt = 0.01 s in equation (6)), which
required many time steps for full flooding to occur. Additionally, many computer runs of the same case, albeit with
different boundary conditions, had to be carried out, prolonging even further the time needed to reach the final solution.
Therefore, this application of SToRM constitutes the ideal problem for testing and applying the numerical optimization
techniques described in the previous sections.

To evaluate the efficiency of the parallel algorithms in SToRM, multiple runs of the same case—i.e., of the flooding
simulation set-up described in the previous paragraphs—were carried out, first without parallelism to set the base run
time T1, then with multiple threads to determine the code speedup performance, T1/TN (where TN is the run time taken
when using N threads). The timing function provided by OpenMP, OMP_get_wtime(), was used to determine the
value of TN, but only the parallel regions of the code were timed. T1 was determined by using only one thread
(OMP_set_num_threads(1) in OpenMP syntax). The results of using a varied number of threads are shown in
Figure 5 (default scheduling, the line with square markers). A run using a single thread took approximately 21 hours
of CPU time in the desktop system described in a previous section.

Figure 4 Comparison between observed flood delineation (red line) and predicted flooded area (gray area) on the same
background image of Figure 3. Note that the observed flood delineation contour does not extend all the way to the
eastern part of the computational domain due to the absence of data.

Figure 5 Speedup gain by SToRM’s parallel implementation.

The initial results were satisfactory and possessed good scalability4, but showed a somewhat lower than expected
speedup, as seen in the “Default scheduling” data of Figure 5. Scheduling sets the way the iterations of a DO-loop are
distributed among the several threads. OpenMP’s default scheduling divides each DO-loop in N equal blocks (N =
number of threads), each block with an identical number of DO-loop iterations, and assigns one to each thread. During
the initial stages of flooding, however, there are many regions of the computational grid that are dry. These regions
are included in all the computational DO-loops of the code, but are cycled over without using CPU time because the

4 Scalability refers to the ability of a parallel system to increase performance when extra processors are added to it.

governing equations are not solved in dry areas. By distributing the cycles of the DO-loops equally among threads,
there are some threads that may have very little to do (those with many dry areas), while others have to do much more
work because they end up with larger portions of the wetted domain. As a result, the former threads finish their
calculations first and must remain idle while waiting for the occupied threads to finish their computations. All the
threads must finish their work before the flow of operations is able to proceed along the remainder of the code to the
next DO-loop. This idle thread time may result in performance degradation, which may be minimal if the
computational region is mostly wet, but that may be substantial when large dry areas exist. This is the reason for the
less-than-ideal performance gain observed for the default scheduling in Figure 5.

To overcome the above limitations, a more dynamic type of scheduling scheme was tried, where work may be
distributed unevenly among threads to minimize the idle thread time. This is accomplished by dividing the DO-loop
iterations into blocks of smaller size, each containing NP iterations: a DO-loop with 1,000 iterations, for example,
would be divided into 5 smaller blocks with 200 iterations each if Np = 200; the same DO-loop would be divided into
100 blocks of 10 iterations each if NP = 10. The blocks are continuously fed to the threads, one block at a time. When
a thread finishes its piece of work it gets a new block. This means that, if a thread gets a block of the DO-loop with
an unusually high number of dry cells and finishes its work very quickly, it is immediately fed another block of work
without having to wait for other threads to complete theirs. This dynamic type of scheduling, hopefully, balances the
work out more evenly among the available threads, but comes with a limiting factor: the cost of larger overhead at
runtime. This overhead is the added computational time taken by the system. It results from the additional work that
must be done to divide the DO-loops and continuously assign the blocks to the processors: more blocks are more
onerous to manage than fewer blocks and, consequently, this superior management effort consumes more
computational resources. If the blocks are very small, increasing the size of the blocks (i.e., larger NP) might, therefore,
benefit overall code speedup by reducing overhead, but can also cause imbalance if one is not careful—the exact same
imbalance that one is trying to avoid by using dynamic scheduling.

Scheduling is problem dependent and is a function of the workload. Workload may vary differently for each case and
even for different simulations of the same case. Several block sizes were tried and, for the simulations carried out for
the present study, a good value of NP was found to be NP =1,000. The results of the speedup obtained with NP = 1,000
and with NP = 10 are shown in Figure 5. It can be seen that using dynamic scheduling resulted in a substantial
performance gain over the initial results using the default (static) scheduling. Using NP = 10 did not provide significant
differences in speedup gain over using NP = 1,000. Taking into account that the present run was carried out in a
computational grid with 57,055 points and 170,194 edges5 (recall that SToRM uses an edge-based data structure,
therefore many of the most computationally intensive DO-loops are carried over the edges), a rule of thumb for this
size problems in desktop computers may be to use a value of NP that is three orders of magnitude smaller than the
number of edges in the computational grid.

CONCLUSION

A depth-averaged, two-dimensional model (SToRM) that solves the SWEs in unstructured triangular grids within the
framework of the Godunov-type, cell-centered finite volume method, was briefly presented. The model was developed
with the purpose of calculating unsteady flow over complex topography with wetting and drying moving fronts, such
as those occurring in catastrophic flooding, and was applied to the estimation of the peak flow discharge passing at
the USGS Gaging Station 06725450, near the city of Longmont, northwest of Denver, CO, during the historic flood
event of September 2013.

Application of SToRM to problems that extend over large geographic areas, resulting in increasing memory and
computational requirements, have created a need for an improvement in code efficiency. This was addressed by using
OpenMP to parallelize some of the most computationally-intensive segments of the original code. These initial efforts
have resulted in achieving substantial performance gains over the original implementation of SToRM, which was
based on sequential algorithms written in Fortran 90/95.

5 The number of edges in an unstructured grid can be found by using a modification of Euler’s formula: nT + 1 = nE
– nV + 2, where nT is the number of triangles, nE is the number of edges, and nV is the number of vertices (points) in
the grid.

The dynamic nature of flooding problems helped identifying bottlenecks in speedup performance gains of parallel
algorithms due to the potential presence of large dry regions in the computational domain. These dry areas may become
inundated and dry again during the course of a simulation and cannot be ignored, posing a challenge to the
computational load balancing and to the optimal use of any multiprocessing computing environment. This difficulty
was addressed in SToRM and solved efficiently with the use of dynamic scheduling. A scheduling parameter NP was
proposed, with a suggested value in the order of one thousandth of the number of edges of the computational grid used
in the computer simulation runs. This value is, however, problem dependent and user care must be used when selecting
it.

Estimation of the peak discharge for the St. Vrain gaging site was accomplished by comparing the computed flood
delineation contours with those obtained from remote sensed images. It was found that a close match was obtained
when using a discharge of 600 m3/s (~21,000 ft3/s) for St. Vrain Creek and of 250 m3/s (~9,000 ft3/s) for Boulder
Creek.

Disclaimer: any use of trade, product, or firm names in this document is for descriptive purposes only and does not
imply endorsement by the U.S. Geological Survey or by the U.S. Government.

REFERENCES

Alcrudo, F., Garcia-Navarro, P. (1993). “A high-resolution Godunov-type scheme in finite volumes in 2D shallow

water equations,” Int. J. Num. Meth. Fluids, Vol. 16, pp 489-505.
Anastasiou, K., Chan, C.T. (1997). “Solution of the 2D shallow water equations using the finite volume method on

unstructured triangular meshes,” Int. J. Num. Meth. Fluids, Vol. 24, pp 1225-1245.
Brufau, P., Vázquez-Cendón, M.E., Garcia-Navarro, P. (2002). “A numerical model for the flooding and drying of

irregular domains,” Int. J. Num. Meth. Fluids, Vol. 39, pp 247-275.
CH2M HILL (2014). Boulder Creek Hydrologic Analysis, Final Report. Prepared for the Colorado Department of

Transportation by CH2M HILL, 9191 S. Jamaica Street, Englewood, CO 80112, August 2014.
Chaudhry, M.H. (1993). Open-Channel Flow. Prentice Hall, Englewood Cliffs, New Jersey.
Gottlieb, S., Shu, C.-W., Tadmor, E. (2001). “Strong stability-preserving high-order time discretization methods,”

SIAM Review, Vol. 43, No. 1, pp 89-112.
Hagen, T., Hjelmervik, J., Lie, K.-A., Natvig, J., and Henriksen, M. (2005). “Visual simulation of shallow water

waves,” Simulation Modelling Practice and Theory, Vol. 13, No. 8, pp 716-726.
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Intergovernmental Panel on Climate

Change, http://www.ipcc.ch/report/ar5/wg2/. (Last accessed January 2015.)
JACOBS (2014). Hydrologic Evaluation of the St. Vrain Watershed, Post September 2013 Flood Event. Report

prepared for the Colorado Department of Transportation by JACOBS, 707 17th Street, Suite 2400, Denver, CO
80202, August 2014.

Novey, M. (2013). “CDOT assessing 'millions and millions' in road, bridge damage,” The Coloradoan, September 15,
2013.

Roe, P.L. (1981). “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys., Vol.
43, pp 357-372.

Rusanov, V.V. (1961). “Calculation of intersection of non-steady shock waves with obstacles,” J. Comput. Math.
Phys. USSR, Vol. 1, pp 267-279.

Sanders, B., Schubert, J., and Detwiler, R. (2010). “ParBreZo: a parallel, unstructured grid, Godunov-type, shallow
water code for high-resolution flood inundation modeling at the regional scale,” Adv. Water Res., Vol. 33, pp
1456-1467.

Shewchuk, J.R. (2002). “Delaunay refinement algorithms for triangular mesh generation,” Computational Geometry:
Theory and Applications, Vol. 22, No. 1-3, pp 21-74.

Simões, F.J.M. (2011). “Finite volume model for two-dimensional shallow environmental flow,” J. Hydr. Eng., ASCE,
Vol. 137, No. 2, pp. 173-182.

Toro, E.F., and Garcia-Navarro, P. (2007). “Godunov-type methods for free-surface shallow flows: A review,” J. of
Hydr. Research, Vol. 45, No. 6, pp. 736-751.

Vázquez-Cendón, E., Hidalgo, A., Garcia-Navarro, P., and Cea, L. (2013). Numerical Methods for Hyperbolic
Equations, CRC Press, Taylor & Francis Group, London, UK.

Venkatakrishnan, V. (1995). “Convergence to steady state solutions of the Euler equations on unstructured grids with
limiters,” J. Comput. Phys., Vol. 118, pp 120-130.

