PHYSICALLY BASED METHOD FOR MEASURING SUSPENDED-SEDIMENT CONCENTRATION AND GRAIN SIZE USING MULTI-FREQUENCY ARRAYS OF SINGLE-FREQUENCY ACOUSTIC DOPPLER PROFILERS

Abstract: As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multi-frequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and may be impossible to collect at time intervals less than discharge-independent changes in suspended-sediment concentration can occur (< hours). Therefore, our physically based multi-frequency acoustic method shows promise as a cost-effective, valid approach for calculating suspended-sediment loads in river at a level of accuracy sufficient for many scientific and management purposes.

INTRODUCTION

Suspended-sediment concentration and discharge are poorly correlated in many rivers as a result of hysteresis in concentration and grain size produced by (1) changes in the upstream sediment supply and (2) hysteresis in bed roughness arising from lags between discharge and dune geometry during floods. Accurate sediment loads can be calculated in rivers exhibiting these types of hysteresis only if measurements of suspended-sediment concentration are made at time intervals more closely spaced than the timescales over which suspended-sediment concentration is observed to systematically vary independently of water discharge. Single-frequency acoustics have recently become popular for measuring suspended-sediment concentration at high temporal resolution. However, because acoustic attenuation and backscatter are both affected by changes in both the concentration and grain-size distribution of the suspended sediment, concentration biases exceeding a factor of two are common and concentration biases exceeding an order of magnitude are possible when only one acoustic frequency is used. Herein, we describe an unbiased physically based method for measuring suspended-silt-and-clay and suspended-sand concentration, and suspended-sand median grain size (D_{50}) using multi-frequency arrays of side-looking acoustic-Doppler profilers (ADPs), building on the work of Topping et al. (2004, 2006, 2007) and Wright et al. (2010). Data from and the locations of the study sites in this paper are available at: http://www.gcmrc.gov/discharge_qw_sediment/.

THEORETICAL FRAMEWORK

The initial theoretical development that ultimately led to the ability of using acoustics to measure suspended-sediment concentrations and grain-size distributions occurred during the early to mid 20th century, with much of this work occurring during World War II (Urick, 1975). Among the most important contributions of this early research
were the derivation and formalization of the sonar equations (National Defense Research Committee [NDRC], 1946; Urick, 1962). In our study, the following form of the active-sonar equation from Urick (1975) is used:

\[SL - 2TL + TS = RL + DT \]

(1)

where \(SL \) is the Source Level, \(2TL \) is the 2-way Transmission Loss, \(TS \) is the Target Strength, \(RL \) is the Reverberation Level, and \(DT \) is the Detection Threshold. By standard convention, each of these terms is expressed as 10 times a base-10 logarithmic ratio of acoustic intensity, in units of decibels. Knowing the values of all of the terms in equation 1 is not required to approximately calibrate an ADP to measure suspended-sediment concentration. In many studies, only the values of \(2TL \) and \(RL \) are used in combined, relative-backscatter form to develop such approximate calibrations (e.g., Thevenot et al., 1992; Gartner, 2004; Wall et al., 2006; Wright et al., 2010; Wood and Teasdale, 2013). These calibrations are referred to as approximate because they hold \(TS \) constant and therefore do not take into account how changes in the grain-size distribution of the suspended sediment affect \(TS \). Depending on the instrument frequency and the grain-size distributions in suspension, neglecting the effects of changing grain size on \(TS \) can lead to substantial biases in ADP measurements of suspended-sediment concentration. Following the convention of Thevenot et al. [1992], the relative backscatter,

\[B = RL + 2TL \]

(2)

thus allowing equation 1 to be rewritten as:

\[SL - DT - B + TS = 0 \]

(3)

\(SL \) of the ADPs used in this study ranges from 191 to 196 dB; \(DT \) has been determined in this study to range from \(\sim 35 \) to 50 dB, and is the level associated with zero concentration of suspended sediment in the water. \(B \) is calculated for each cell along an acoustic beam where the amplitude of the acoustic signal strength, \(A \), exceeds the effective noise floor. The effective noise floor is the sum of the ADP measured noise floor and the noise-floor offset (determined by an iterative process that removes dependence of the measured acoustic attenuation and backscatter on cell number). In each cell,

\[RL = k_{sf} A \]

(4)

where \(A \) is the amplitude of the acoustic signal strength measured in counts, and \(k_{sf} = 0.43 \) is a scale factor used to convert counts to decibels. By standard convention (Urick, 1975),

\[2TL = 20 \log (r) + 2\alpha_w r + 2\alpha_s r \]

(5)

where \(r \) is the distance along the beam from the transducer to each cell in meters, \(20\log(r) \) is the spherical spreading loss term, \(\alpha_w \) is the coefficient of absorption for acoustic energy in water in dB/m (depends only on temperature at the shallow-water and low-salinity conditions in rivers), and \(\alpha_s \) is the sediment attenuation coefficient in dB/m. For convenience in solving for \(\alpha_s \), a new term is defined, the fluid-corrected backscatter (Wright et al., 2010),

\[B_r = RL + 20 \log (r) + 2\alpha_w r \]

(6)

with \(\alpha_s \) then being determined by least-squares linear regression where the values of \(B_r \) are regressed on \(r \) (Topping et al., 2006, 2007b) while iteratively solving for the effective noise floor. In this regression, \(\alpha_s \) is equal to \(-1/2\) times the slope of the relation between \(r \) and \(B_r \). Once \(\alpha_s \) is known, \(B \) is then calculated in each cell where \(A \) exceeds the effective noise floor, finally allowing calculation of the beam-averaged backscatter, \(\overline{B} \). \(\overline{B} \) is \(B \) averaged first among all cells in a beam and them among all beams used on an ADP.

Attenuation: Acoustic attenuation caused by the presence of suspended sediment arises from two distinctly different physical processes that vary in importance largely as a function of instrument frequency, sediment grain size, and sediment density (Flammer, 1962). These processes are acoustic attenuation from: viscous losses arising from viscous drag between the water and sediment grains (Urick, 1948), and scattering losses arising from the
scattering of sound by the sediment grains in directions other than back toward the detector (Lamb, 1945; Urick, 1948; Morse, 1948). Viscous losses dominate when the suspended sediment is relatively fine whereas scattering losses dominate when the suspended sediment is relatively coarse. We use the conventions and methods of Urick (1948), Flammer (1962), Hay (1983), and Moore et al. (2013) to calculate a sediment attenuation coefficient (α_s) that includes the effects of both viscous- and scattering-losses as well as the effects of multiple grain sizes and wet densities of sediment. Following Urick (1948), α_s is the product of the unit sediment attenuation coefficient, α_{UNIT}, and the concentration of suspended sediment, C:

$$\alpha_s = \alpha_{\text{UNIT}} C.$$

(7)

In our study, the unit sediment attenuation coefficient is defined as the sediment attenuation coefficient at a suspended-sediment concentration of 1 mg/L, with α_s expressed in units of dB/m and C expressed in units of mg/L. α_{UNIT} is the combined ensemble-averaged viscous and scattering attenuation coefficients and is derived in this study using the equations of Moore et al. (2013), and making the appropriate conversions, such that it is expressed in units of decibel-liter per meter-milligram or dB-L/m-mg. Changes in the sorting and density of the suspended-sediment grain-size distribution and the frequency of the ADP all have a major influence on α_{UNIT} (Figure 1). From the example in Figure 1b, it is evident that there exists an optimal range of acoustic frequency, suspended-sand D_{50}, and suspended-silt-and-clay D_{50} where the sand contributes very little to α_{UNIT} and:

$$\alpha_s = \alpha_{\text{UNIT}} C_{\text{SILT-CLAY}}$$

(8)

where $C_{\text{SILT-CLAY}}$ is the suspended-silt-and-clay concentration. In many rivers the D_{50} of the suspended sand ranges from 0.0625 to ~0.25 mm (very fine to fine sand) and, in the absence of flocculation, the D_{50} of the suspended silt and clay ranges from ~0.0005 to ~0.01 mm (fine clay to fine silt). For the sorting of the grain-size distributions portrayed in Figure 1b, these median grain sizes result in a fair degree of separation between the value of α_{UNIT}

![Figure 1](https://example.com/figure1.png)

Figure 1 Effects of changes in (a) sediment sorting and (b) ADP frequency and sediment density (ρ_s) on α_{UNIT}. (a) Predicted values of α_{UNIT} at the 1-MHz frequency for the D_{50} of log-normal suspended-sediment grain-size distributions with geometric standard deviations (σ_i) of 0.1$, 0.5$, 1, 2, 3, and 4. ρ_s is held constant at 2.65 g/cm3 (quartz density) in this example. (b) Predicted values of α_{UNIT} at acoustic frequencies of 600 kHz, 1 MHz, 2 MHz, and 3 MHz for the D_{50} of log-normal suspended-sediment grain size distributions with $\sigma_i = 1$ and $\rho_s = 2.65$ g/cm3, and α_{UNIT} at 1 MHz for the D_{50} of log-normal suspended-sediment grain size distributions with $\sigma_i = 1$ and a montmorillonite wet $\rho_s = 1.8$ g/cm3.

associated with the sand and the value of α_{INIT} associated with the silt and clay, especially at lower acoustic frequencies. For these median grain sizes and acoustic frequencies, and so long as the suspended-sand concentration does not greatly exceed $C_{\text{SLT-CLAY}}$, $C_{\text{SLT-CLAY}}$ can therefore be reasonably accurately predicted by α_s. This result allowed Topping et al. (2006, 2007) and Wright et al. (2010) to develop their first-cut single-frequency approximate method of using acoustic attenuation to measure suspended-silt-and-clay concentration and acoustic backscatter to measure suspended-sand concentration.

Target strength and backscatter: Target strength, TS, is determined by the amount and nature of the sediment in suspension and by the dimensions of the ensonified volume (NDRC, 1946; Urick, 1975). Much research has been completed on the acoustic scattering effects of individual and, later, concentrations of particles in suspension (Rayleigh, 1896; NDRC, 1946; Urick, 1975; Thorne and Hay, 1988; Hay, 1991; Hay and Sheng, 1992; Thorne and Campbell, 1992; He and Hay, 1993; Thorne et al., 1993, 1995; Thorne and Hanes, 2002; Thorne and Buckingham, 2004; Thorne and Meral, 2008; Moore and Hay, 2009). Although the initial work in this field was conducted on regularly shaped particles, sufficient work using natural sand grains (in both single and mixtures of grain sizes) has allowed a sufficiently robust theory on how sound is backscattered by suspensions of sediment in water. The equation used to derive the relation for TS is the following version of the Thorne et al. (1993) equation:

$$P_{mn} = P_0r_0^2[\frac{3Mt\alpha_s}{8D_5\rho_s}]^{\frac{3}{2}}0.96\frac{c}{ka_\text{nearest}}e^{-2\alpha_r}$$ (9)

where P_{mn} is the reverberation-level pressure measured at the transducer (in Pascals), P_0 is the source-level pressure (in Pascals) at distance $r_0 = 1$ m from the transducer, r is the distance along the beam from the transducer (in meters), f is the nondimensional form function that describes the backscattering strength of sediment grains in water as a function of ka_s, $k = 2\pi/\lambda$ is the wave number (in 1/m), λ is the acoustic wavelength (in meters), a_s is the radius of the sediment grains (in meters), D is the diameter of the sediment grains (in meters), ρ_s is the density of sediment (in kg/m3), M is the mass concentration of suspended sediment (in kg/m3), t is the acoustic pulse duration (in seconds), c is the measured speed of sound (in m/s), a_T is the radius of the transducer (in meters), α_s is the attenuation coefficient (in nepers/m) resulting from the sum of α_0 and α_c, and ψ is the non-dimensional near-field correction of Downing et al. (1995) that accounts for non-spherical spreading losses very near the transducer. We exclude this near-field correction because it is either negligible or, at higher frequencies, degrades the results by overcorrecting B_T in the first cell, thus resulting in negative biases in α_s that get larger with increasing $C_{\text{SLT-CLAY}}$.

The form function, f, used in this study is that of Thorne and Meral (2008), which takes into account both the effect of the non-spherical shape of natural sediment grains and the effect of multiple grain sizes. Relative to form functions evaluated for single-size spheres, these two effects combine to result in a substantial increase in f in the Rayleigh scattering regime ($ka_s < 1$), and a smaller decrease in the geometric scattering regime. Because this form function is used, M in equation 9 is the concentration of the grain-size distribution of suspended sediment with median grain size D_{50}. Hence, D in equation 9 is replaced with D_{50}. The fact that f and D_{50} are associated with a grain-size distribution and not just a single sediment grain size has major implications with respect to the derivation and physical interpretation of the target strength. The target strength derived below is therefore that for the entire grain-size distribution of sediment in suspension and not that for only sand. In cases where the amount of silt and clay greatly exceeds the amount of sand in suspension, the target strength will approach that for the suspended-silt-and-clay grain-size distribution and will be much different from the target strength for the suspended-sand grain-size distribution. One of the greatest source of error/bias in the methods used in previous studies that have related acoustic backscatter to the concentration of only suspended sand arises from these studies neglecting this important physical effect.

Because acoustic intensity is acoustic pressure squared and 1 neper = 8.686 dB, following the appropriate substitutions, simplifications, and rearrangement, equation 9 can be rewritten in the following decibel form:

$$RL = SL + [-20\log(r) - 2\log \alpha_w - 2\log \alpha_s] + 10\log \left[f^2 \frac{3Mt\alpha_s}{8D_{50}\rho_s} \left(\frac{0.96}{ka_\text{nearest}}\right)^2\right]$$ (10)
to be consistent with equation 1 and then further simplified to:

$$SL - B + 10 \log \left[f^2 \frac{3Mc}{8D_{50} \rho_s} \left(\frac{0.96}{kaT} \right)^2 \right] = 0.$$ \hspace{1cm} (11)

Simple comparison of equation 3 and equation 11 suggests incorrectly that the right term of the three terms in equation 11 is essentially the target strength minus the detection threshold. Closer inspection of these two equations, however, indicates a problem arising from the conversion of equation 9 from pressure form to the logarithmic intensity form in equation 10 compatible with the sonar equations. When M goes to zero in equation 9, the reverberation-level pressure, P_{rms} also goes to zero. However, when M goes to zero in equation 11, RL goes to minus infinity, because the logarithm of zero is an infinitely large negative number. This problem can be corrected by limiting solution of equation 11 to only those cases where $M > 0$ and by adding a new term from equation 3, the detection threshold, DT. As used in this study, DT is slightly lower than the lowest measured RL in this study during conditions when the suspended-sand concentration was immeasurably small (<0.01 mg/L), conditions when RL is typically less than ~40 to 50 dB. Thus equation 11 can be written in final form as:

$$SL - DT - B = -TS = -10 \log \left[f^2 \frac{3Mc}{8D_{50} \rho_s} \left(\frac{0.96}{kaT} \right)^2 \right]$$ \hspace{1cm} (12)

and can be solved only when $M > 0$.

To finish the derivation of TS such that it is compatible with the backscatter – sediment-concentration relations derived from the sonar equations for constant grain size by Thevenot and others (1992), we: (1) convert M from SI units into the more conventional sediment-concentration units of mg/L and convert D_{50} from SI units into the more appropriate units of mm for sand and finer sediment (these two conversions cancel each other out), and (2) break TS in equation 12 into two parts, the Unit Target Strength, UTS, and, C, the concentration in mg/L of suspended sediment in a log-normal grain-size distribution with median grain size D_{50}. In this two-part form,

$$UTS = UTS + 10 \log C$$ \hspace{1cm} (13)

where,

$$UTS = 10 \log \left[f^2 \frac{3c}{8D_{50} \rho_s} \left(\frac{0.96}{kaT} \right)^2 \right]$$ \hspace{1cm} (14)

and $UTS = TS$ when $C = 1$ mg/L. By virtue of equation 13 a tenfold change in C will result in a 10 dB change in TS when the grain-size distribution of the suspended sediment remains constant. Changes in the grain-size distribution affect both f and D_{50} in equation 13, resulting in a more complicated influence on TS than do changes in C.

The more complicated influence on TS of changes in the sand grain-size distribution under constant C is best illustrated through calculation of the Relative Unit Target Strength ($RUTS$), that is, the UTS relative to the UTS associated with a reference D_{50}, denoted as $D_{50,REF}$. $D_{50,REF}$ is the median grain size at a given location that best characterizes the D_{50} of the suspended sediment over the widest possible range in concentration. For convenience, the UTS associated with $D_{50,REF}$ is abbreviated as UTS_{REF}. $RUTS$ is calculated by simply subtracting UTS_{REF} from the UTS for all values of D_{50}. By virtue of the behavior of the $RUTS$, backscatter measurements made with higher-frequency ADPs are generally less sensitive to changes in suspended-sand D_{50} than are backscatter measurements made with lower-frequency ADPs. The $RUTS$ increases rapidly as a function of increasing D_{50} over most of the Rayleigh scattering regime, and only begins to plateau around $kaT \sim 0.5$. The main implication of this result is that, when $kaT < 0.5$, use of a single-frequency acoustic approach to measure suspended-sand concentration will be highly biased as a result of concentration-independent variation in D_{50}. Comparison between measured and theoretically determined values of the $RUTS$ are good (Figure 2). The behavior of the $RUTS$ as a function of frequency and D_{50} is
the physical process that allows accurate, that is, relatively unbiased, backscatter-based measurements of suspended-sand concentration and D_{50} to be possible when multiple acoustic frequencies are used.

Figure 2 Comparisons of measured and theoretical values of $RUTS$ at the Colorado River near river mile 30, 09383050, (CR30) study site, at (a) 2-MHz and (b) 1-MHz acoustic frequencies. Measured values of the $RUTS$ are segregated into three different concentration ranges in these plots to allow evaluation of whether they depend on concentration; as indicated in these plots, there is no discernable dependence of the measured $RUTS$ on concentration. D_{50}-SAND error bars are 95%-confidence-level error bars that include both field and laboratory-processing errors in the EWI measurements of D_{50}-SAND; $RUTS$ error bars are 95%-confidence-level error bars that include (1) both field and laboratory-processing errors in the EWI measurements of C_{SAND}, (2) a 2% estimated error in the ADP-calculated values of B, and (3) the 95%-confidence-level error in the mean value of B time-averaged over the 1-hour interval centered on the temporal midpoint of the time of each EWI measurement.

Our derivation of the UTS and $RUTS$ allows the Thevenot et al. (1992) simplification of the sonar equation to be re-derived in a convenient form for cases of varying grain size; a form that in this study uses backscatter measured at multiple frequencies to solve for both suspended-sediment concentration and D_{50}. In their simplification of the active sonar equation, Thevenot et al. (1992) showed that, when grain size is constant:

$$C = 10^{-0.1K + 0.1B}$$

where C is sediment concentration in mg/L, B is relative backscatter (replaced in this study by \bar{B} the beam-averaged backscatter), and K is a constant. Substituting equations 13 and 14 into equation 12 and rearranging equation 12 to be in the form of Thevenot et al. [1992] indicates that, when grain-size is allowed to vary, K is not truly constant, but is the sum of a constant part ($SL - DT$) and a varying part (UTS). The rearranged version of equation 12 after these substitutions is:

$$C = 10^{-0.1(\bar{B} + UTS) + 0.1\bar{B}}. \quad (16)$$

Thus, a generalized way to re-derive equation 15 such that grain size is free to vary is to define a new constant:

$$K_1 = SL - DT \quad (17)$$
and rewrite equation 16 as:

$$C = 10^{0.1K_1 - 0.1UTS^{0.1}}.$$

(18)

For the special case, where C is the concentration of suspended sediment with D_{50} equal to $D_{50,REF}$,

$$C = 10^{0.1K_1 - 0.1UTS^{0.1}}.$$

(29)

Because

$$RUTS = UTS - UTS_{REF}$$

(20)

the general case where the median grain size of the sediment in suspension is allowed to vary can be written as:

$$C = 10^{0.1K_1 - 0.1UTS^{0.1} - 0.1RUTS + 0.1B}.$$

(21)

Because UTS_{REF} is constant at a given study site, it is convenient to define another new constant:

$$K_2 = -(K_1 + UTS_{REF}) = -0.1(SL - DT + UTS_{REF})$$

(22)

allowing the final more-general form of equation 15 for varying grain size:

$$C = 10^{K_1 + 0.1(B - RUTS)}.$$

(23)

If only one frequency ADP is present, it is theoretically impossible to solve for both C and $RUTS$ for a given measured B. However, if two or more frequencies are present, it is possible to iteratively solve for C and $RUTS$. This iterative approach is the basis for the method we use to calculate suspended-sand C and D_{50}.

As a grain-size distribution of suspended sediment broadens, the difference in the UTS between silt-and-clay- and sand-size sediment lessens as a result of the effect of decreased sorting on the form function. In cases where the geometric standard deviation, α_G, of a grain-size distribution is less than $\sim 1.5\phi$, the UTS associated with silt grain-size distributions will be much less than the UTS associated with sand grain-size distributions. In these cases, the backscatter will be dominantly produced by sand-size sediment. Conversely, in cases where the α_G of a grain-size distribution exceeds $\sim 1.5\phi$, the UTS associated with silt grain-size distributions becomes a larger fraction of the UTS associated with sand grain-size distributions, and measurable backscatter will be produced by the silt-size sediment in addition to the backscatter produced by the sand-size sediment. Ultimately, in cases where the α_G of a grain-size distribution exceeds $\sim 3\phi$, the UTS associated with grain-size distributions of silt and clay will be nearly equal to the UTS associated with grain-size distributions of sand. Under these conditions, the backscatter produced by the suspended silt and clay is nearly as much as that produced by the suspended sand. Because the sorting of suspended silt and clay ($\sigma_s = 2$ to 3ϕ) is much broader than the sorting of suspended sand ($\sigma_s = 0.63$ to 0.65ϕ) at our study sites, a condition likely in most rivers, the backscatter produced by silt and clay must be accounted for under conditions when the concentration of the suspended silt and clay greatly exceeds that of the sand.

To allow accurate acoustic measurements of suspended-sand concentration to be made when even large concentrations of silt and clay are present (and most of B arises from the amount of silt and clay in suspension), a data-processing method was developed to allow separation of the part of B arising from sand-size sediment from the part of B arising from silt-and-clay-sized sediment. This method utilizes the differing theoretical behaviors of the UTS and α_G under different combinations of suspended silt and clay and suspended sand. An early empirical version of this method was described in Topping et al. (2007). The basis for the UTS part of this method is the development of a Base-Backscatter-Calibration (BBC) relation between B and the log-transformed EDI/EWI-measured suspended-sand concentration using equation 23 for conditions where the suspended sediment is
dominated by sand-size sediment with a median grain size within ¼φ of \(D_{50,REF} \) and assumed constant sorting. Relations are then developed using both theory and empirical analysis to account and correct for the excess backscatter relative to this relation for conditions where the amount of silt and clay greatly exceeds the amount of sand in suspension. For accurate BBC relations to be developed, the average concentration of suspended sand along the beam must systematically relate to the EDI/EWI-measured velocity-weighted concentration of suspended sand in the cross section. Because of how the flow and suspended-sediment-concentration field interact with the local channel geometry at the locations of ADP deployments, there are typically differences between the average suspended-sand \(C \) and \(D_{50} \) in the part of the cross section ensonified by the ADP beams and the velocity-weighted suspended-sand \(C \) and \(D_{50} \) in entire EDI/EWI cross section. These differences lead to differences between the theoretically predicted (0.1 by equation 23) and empirically determined slopes and y-intercepts of the BBC relations. The BBC relation form of equation 23 allowing empirically determined slopes and y-intercepts is:

\[
\log(C_{SAND-REF}) = K_2 + K_3 B_{BASE} \tag{24}
\]

where \(C_{SAND-REF} \) is the EDI/EWI-measured reference concentration in the river cross section of suspended sand with a median grain size equal to \(D_{50,REF} \), and \(B_{BASE} \) is the base backscatter associated with \(C_{SAND-REF} \).

The additional beam-averaged backscatter required to account for the amount of backscatter produced by the presence of suspended silt and clay at a given concentration of suspended sand is referred to as the excess backscatter, \(B' \). Excess backscatter is calculated as:

\[
B' = B - B_{BASE} \tag{25}
\]

Because

\[
B = TS + SL + DT
\]

equation 25 can be rewritten as:

\[
B' = (TS_{SED} + SL + DT) - (TS_{SAND-REF} + SL + DT) \tag{27}
\]

and simplified to:

\[
B' = TS_{SED} - TS_{SAND-REF} \tag{28}
\]

where \(TS_{SED} \) is the target strength of the suspended sand, silt, and clay mixture and \(TS_{SAND-REF} \) is the target strength of \(C_{SAND-REF} \). By definition, when all of the suspended sediment is composed of sand with \(D_{50} = D_{50,REF} \), \(B' = 0 \). To derive the theoretically based value of \(B' \) at constant sand concentration and \(D_{50} \), equation 13 can be rewritten as:

\[
TS = 10 \log \left(\frac{f^2}{D_{50,REF} \rho_s} \right) + 10 \log C + 10 \log \left(\frac{3t c}{8} \left(\frac{0.96}{k a_T} \right)^2 \right) \tag{29}
\]

After rearrangement and substitution of the quartz density of 2.65 g/cm\(^3\) for the density of sand and replacement of the 0.1 theoretical slope of the BBC relation with the empirical slope \(K_3 \), equation 29 becomes:

\[
B' = \left(\frac{1}{K_3} \right) \log \left(\left(\frac{f_{SED}}{f_{REF}} \right)^2 \left(\frac{D_{SILT-REF}}{D_{50,SED}} \right) \left(\frac{2.65}{\rho_{SED}} \right) \left(1 + \frac{C_{SILT-CLAY}}{C_{SAND-REF}} \right) \right) \tag{30}
\]

where \(C_{SILT-CLAY} \) is the concentration of silt and clay in mg/L, \(D_{50,SED} \) is the median grain size of the sand, silt, and clay mixture in suspension, \(f_{SED} \) is the value of the Thorne and Meral (2008) form function calculated for the grain-size distribution of the sand, silt, and clay mixture, \(\rho_{SED} \) is the wet density of the sand, silt, and clay mixture, and \(f_{REF} \)
is the value of the Thorne and Meral (2008) form function associated with the $D_{50,\text{REF}}$ of the suspended sand. The theoretical behavior of B' predicted by equation 30 agrees well with the empirical behavior of B' (Figure 3).

Figure 3 (a) B' plotted as a function of S for the 2-MHz ADP at the Rio Grande above Rio Grande Village, TX, 08375295, (RG-RGV) study site. The BBC relation used to calculate values of B' has a slope of 0.078. The theoretical relation for B' is derived using a sand grain-size distribution with $D_{50,\text{REF}} = 0.105 \text{ mm}$ and $\sigma_G = 0.65 \phi$, and a silt and clay grain-size distribution with $D_{50} = 0.002 \text{ mm}$, $\sigma_G = 2.7 \phi$, and a wet density of 2.65 g/cm^3. (b) Log(C_{SAND}) plotted as a function of \overline{B} for 8 different ranges of S for the 2-MHz ADP at the RG-RGV study site. Measurements plotted are the same as in a. BBC relation fit to suspended-sediment measurements with $S \leq 10$ shown as solid black line; theoretical relations between \overline{B} and log(C_{SAND}) at higher values of S calculated using the theoretical B' relation in a.

As a result of the theoretical behaviors of backscatter and attenuation under different suspended-sediment grain-size distributions, the backscatter produced by extremely high concentrations of suspended silt and clay can effectively mask the backscatter produced by sand when the ratio of suspended silt and clay to suspended sand, S, is high. As a result of backscatter masking by relatively high concentrations of suspended silt and clay, theoretically derived relations between \overline{B} and log(C_{SAND}) at constant α_5 become extremely steep (with almost no slope) at lower values of log(C_{SAND}), making it problematic to accurately solve for log(C_{SAND}). The steepness transition in these relations occurs at increasing values of S as the D_{50} of the silt and clay decreases. To calculate C_{SAND} using only the backscatter produced by the suspended sand, we subtract the silt-and-clay produced excess backscatter B' from measurements of \overline{B} by using theoretically derived relations between \overline{B}, α_5, log(C_{SAND}), and S calculated on the basis of equations 8, 24, and 30 (Figure 4).

TWO-FREQUENCY RUTS METHOD

The two-frequency RUTS method for measuring C_{SAND} and D_{50} is an iterative process that uses as input (1) the single-frequency 1- and 2-MHz estimates of C_{SAND} calculated using the theory described in the previous section and (2) the theoretical relations between suspended-sand D_{50} and the RUTS at the 1- and 2-MHz frequencies. Because backscatter at higher frequencies is less affected by changes in the D_{50} of the suspended sand, the 2-MHz
Furthermore, the inclusion of study sites, inclusion of ADP resulted in biased measurement of silt and clay to backscatter is accounted for. At our study sites, use of a single frequency may be obtained by using only a single suspended sand grain. Unless the range in suspended sand grain size distribution. In cases where the range in suspended-sand D50 is smaller than about 0.75φ, reasonably unbiased results may be obtained by using only a single 2-MHz-frequency ADP, but only if the contribution of silt and clay to backscatter is accounted for. At our study sites, inclusion of B' resulted in a substantial reduction in the relative bias in the measurements of C_{SAND}. Furthermore, the inclusion of B' results in a much more substantial reduction in the maximum relative error. For

RESULTS

The estimate of C_{SAND} is chosen as the initial concentration estimate in this calculation. The difference in the values of B measured at the 1- and 2-MHz frequencies (corrected for B'), the theoretical RUTS relations, and the BBC relations for the 1- and 2-MHz ADPs are then used in an iterative fashion to calculate the D50 and concentration of the suspended sand that satisfies the constraint that the B'-corrected values of B measured at each frequency are associated with the same suspended-sand concentration. By this process, when the 1-MHz estimate of C_{SAND} exceeds the 2-MHz estimate, the suspended-sand D50 is calculated to be greater than D50_{REF} using the 1-MHz RUTS relation and the two-frequency value of C_{SAND} is calculated to be less than the initial 2-MHz estimate of C_{SAND} using the 2-MHz RUTS relation and this new value of D50. Conversely, when the 1-MHz estimate of C_{SAND} is lower than the 2-MHz estimate of C_{SAND}, the suspended-sand D50 is calculated to be less than D50_{REF} using the 1-MHz RUTS relation and the two-frequency value of C_{SAND} is calculated to be greater than the initial 2-MHz estimate of C_{SAND} using the 2-MHz RUTS relation and this new value of D50. Compared to the initial single-frequency estimates of C_{SAND}, two-frequency measurements of C_{SAND} by this process are generally unbiased as a function of changing suspended-sand D50 (Figure 5). As expected on the basis of the theoretical behavior of the RUTS depicted in Figure 2, grain-size-driven biases in 1-MHz estimates of C_{SAND} are greater than in 2-MHz estimates of C_{SAND}.

Figure 4 Behavior of theoretical relations between B and log(C_{SAND}) for different values of αS at the 1-MHz frequency. The gray shaded regions indicate the regions of backscatter masking produced by relatively high concentrations of suspended silt and clay. Suspended-sand D50 = 0.125 mm, σS = 0.63φ; suspended-silt-and-clay D50 = 0.001 mm, σS = 3φ, ρS = 2.65 g/cm3. BBC relation has a slope (K1) of 1 and y-intercept (K2) of 0. Shown are the BBC relation and the relations between B and log(C_{SAND}) for the cases where αS = 0.1, 1.0, and 10 dB/m. These relations between B and log(C_{SAND}) are near vertical when S exceeds ~300 in the gray shaded region.
Figure 5 Relative errors in single-frequency and two-frequency acoustic measurements of C_{SAND} at the CR30 study site. F-tests conducted on the least-squares linear regressions fit to these relative errors indicate significant positive correlations (at the $p = 0.05$ critical level) between suspended-sand D_{50} and error for both the 1- and 2-MHz single-frequency measurements of C_{SAND}, but no significant correlation between suspended-sand D_{50} and error for the two-frequency measurements. The significant relation between suspended-sand D_{50} and error is much steeper at the 1-MHz frequency than at the 2-MHz frequency. These results indicate the presence of grain-size-driven bias in the single-frequency measurements of C_{SAND} that is larger at the lower frequency, as expected on the basis of the theoretical behavior of the RUTS depicted in Figure 2.

Example, at the RG-RGV study site, the maximum relative error in the acoustic measurements of C_{SAND} when using the single-frequency method at 1 MHz neglecting B' is +95.900%; this enormous relative error decreases to +65.1% upon inclusion of the effects of B'. Furthermore, among the 173 paired acoustic and EWI measurements at the Colorado River near Grand Canyon, AZ, 09402500, study site, the maximum relative error in the acoustic measurements of C_{SAND} when using the single-frequency method at 2 MHz neglecting B' is +1,410%; this extremely large relative error decreases to +65.6% upon inclusion of the effects of B'.

The two-frequency acoustic measurements compare well with the physical measurements of the velocity-weighted suspended-silt-and-clay, suspended-sand concentrations, and suspended-sand median grain sizes in the river cross sections at the study sites on the Colorado River and Rio Grande (Figure 6). Wilcoxon-Mann-Whitney tests conducted on in- and out-of-sample data from the Colorado River study sites indicate that the in-sample and out-of-sample errors in the acoustic measurements of silt and clay concentration and sand concentration are not significantly different at the 0.05 critical level. In Figure 6a, the acoustic and physical measurements of suspended-silt-and-clay concentration are in good agreement over the range from ~100 mg/L to ~20,000 mg/L; in figure 6b, the acoustic and physical measurements of suspended-sand concentration are in good agreement over the range from ~2 mg/L to ~5,000 mg/L. Though not shown in figure 6a because the physical measurements are calibrated-pump measurements, acoustic and calibrated-pump measurements of suspended-silt-and-clay concentration have been found to agree well at concentrations as high as ~30,000 mg/L on both the Colorado River and Rio Grande. In Figure 6c, the acoustic and physical measurements of suspended-sand D_{50} are in reasonable agreement over the range from ~0.08 to 0.25 mm. Although the variance about the line of perfect agreement in Figure 6c appears larger than in Figures 6a-b, this is a visual artifact of the differences in scale between the figure panels; five orders of magnitude are plotted in Figures 6a-b, whereas less than one order of magnitude is plotted in Figure 6c. In reality, the variance about the line of perfect agreement in Figure 6c is smaller than in Figures 6a-b.
Figure 6 Two-frequency acoustic measurements of the velocity-weighted (a) suspended-silt-and-clay concentration, (b) suspended-sand concentration, and (c) suspended-sand \(D_{50} \) in the river cross section plotted as a function of the EDI or EWI-measured values of these parameters at the five Colorado River and Rio Grande study sites where the EDI/EWI measurement cross section is located within 200 m of the ADP arrays. Black solid lines are the lines of perfect agreement between the EDI/EWI measurements at the acoustic measurements. In-sample data are those used in the calibration of either of the two ADPs at a study site; out-of-sample data are not used in any calibration. Horizontal error bars indicate the 95%-confidence-level combined field and laboratory errors in the EDI/EWI measurements calculated using the methods in Topping et al. (2010, 2011).

For all three of the parameters plotted in Figure 6, the the log-transformed variance is approximately symmetric about the lines of perfect agreement, indicating the presence of little bias in the method; a result supported by F-tests conducted on the relative errors associated with each acoustic measurement. Only in the case of the acoustic
measurements of the suspended-sand D_{50} do the F-tests indicate the presence of bias; there is a tendency for a small positive bias in the acoustic measurements of suspended-sand D_{50} when $D_{50} < D_{50,REF}$ and for a small negative bias in these measurements when $D_{50} > D_{50,REF}$. Although the two-frequency acoustic measurements are generally unbiased, the presence of reasonably large variance about the lines of perfect agreement indicates that these measurements are subject to relatively large random error. For both suspended silt and clay and suspended sand, the log-transformed variance about the lines of perfect agreement decreases significantly with increasing concentration. In the case of sand, this decrease in variance is gradual, whereas in the case of silt and clay, this decrease in variance is rapid between concentrations of 1 and 100 mg/L and more gradual between concentrations of 100 and 20,000 mg/L. These negative correlations between concentration and the log transformed variance about the line of perfect agreement, and therefore the relative error in the acoustic measurements of suspended-silt-and-clay concentration and suspended-sand concentration both decrease with increasing concentration. For suspended-sand D_{50}, the log-transformed variance about the line of perfect agreement, and therefore the relative error in the acoustic measurements of suspended-sand D_{50}, is approximately constant across the measured 0.09 to 0.25-mm range.

REFERENCES

