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INTRODUCTION 

Characterizing the large-scale sedimentary make-up of heterogeneous riverbeds (Nelson et al., 
2014), which consist of a patchwork of sediment types over small scales (less than one to several 
tens of meters) (Dietrich and Smith, 1984) requires high resolution measurements of sediment 
grain size. Capturing such variability with conventional physical (e.g. grabs, cores, and dredges) 
or underwater photographic sampling (Rubin et al., 2007; Buscombe et al., 2014a) would be 
prohibitively costly and time-consuming. However, characterizing bed sediments using high-
frequency (several hundred kilohertz) acoustic backscatter from swath-mapping systems has the 
potential to provide near complete coverage of the bed (Brown and Blondel, 2009; Brown et al., 
2011; Snellen et al., 2013), at resolutions down to a few centimeters, which photographic 
sampling could not practically achieve within the same time and with the same positional 
accuracy. 

In shallow water, the physics of high frequency scattering of sound are relatively poorly 
understood, therefore acoustic sediment classification are almost always statistical (Snellen et al., 
2013). Many such methods proposed to date are designed for characterizing large areas of seabed 
(Brown and Blondel, 2009; Brown et al., 2011) at relatively poor resolution (tens of meters to 
several hundred meters) and therefore rely on aggregation of data over scales much larger than 
the typical scales of sediment patchiness on heterogeneous riverbeds. In response to this need, 
Buscombe et al. (2014b, 2014c) developed a new statistical method for acoustic sediment 
classification based on spectral analysis of backscatter. This method is both continuous in 
coverage and of sufficient resolution (order meter or less) to characterize sediment variability on 
patchy riverbeds. Here, we apply these methods to multibeam echosounder (MBES) data 
collected from the bed of the Colorado River in Marble and Grand Canyons.  

Sediment dynamics on the Colorado River in Grand Canyon National Park have been studied for 
several decades (e.g. Howard and Dolan, 1981; Rubin et al., 2002). Particular focus has been 
given to sandbars in large eddies downstream of tributary debris fans (Schmidt, 1990) because 
they are considered valuable resources by stakeholders and managers. Due to the severe 
limitations in sand supply imposed by Glen Canyon Dam (Howard and Dolan, 1981; Topping et 
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al., 2000; Hazel et al., 2006), understanding the effectiveness of sandbar management practices, 
such as controlled floods (Rubin et al. 2002; Topping et al., 2006; Hazel et al., 2010), and the 
long-term fate of sand in Grand Canyon over decadal timescales, requires construction of 
accurate sand budgets, which involves detailed monitoring of influx, efflux and changes in sand 
storage (Topping et al., 2000; Topping et al., 2010; Grams et al., 2013) and assessments of  
uncertainties in sand-budget calculations (Grams et al., 2013). 

In order to estimate the sand budget, it is necessary to estimate what component of observed 
morphological changes is sand and what component is coarser. Grams et al. (2013) classified 
sand and coarse substrates using topographic roughness derived from digital elevation models, 
but the classification skill was estimated to be only 60-70%. In addition, sand bedforms had to be 
delineated manually, and validation was based on grain-size observations with positional 
uncertainties up to tens of meters. Because the morphology of the Colorado riverbed in Grand 
Canyon is mapped - to a large extent - using MBES (Kaplinski et al., 2009), the primary 
motivation for the present study is to examine how uncertainties in sand budgets can be 
constrained by producing maps of surface sediment types using the completely automated 
methods of Buscombe et al (2014b, 2014c) based on statistical analysis of MBES acoustic 
backscatter. 

SITES AND DATA 

MBES soundings, backscatter and underwater video camera images were collected in August 
2013 from three short (approx. 500-1000m) reaches around sediment and flow gaging stations 
(Figure 1). Site 1 (hereafter, RM30), in Upper Marble Canyon at river-mile 30, is a relatively 
straight section of channel within the Redwall Limestone above Shinumo Wash. Site 2 
(hereafter, RM61), in Lower Marble Canyon at river-mile 60, is within the Tapeats Sandstone 
just above the confluence with the Little Colorado River. Site 3 (hereafter, RM87), in Eastern 
Grand Canyon at river-mile 87, near Phantom Ranch within the Upper Granite Gorge, comprises 
two sections separated by a riffle and debris fan on river left. These sites were chosen to test 
scattering signatures of bed sediment because they collectively include a majority of the range of 
sediment, flow, geomorphic and geological settings found in this canyon river. 

MBES data were collected using a Reson® 7125 multibeam sonar, operating at 400 kHz with a 
configuration that produces a 512 beam swath across a total subtended angle of 135°. This 
geometry permits swath widths of up to seven times the water depth. Each beam has a 0.5° 
across-track by 1.0° along-track angular width. Each echo is registered simultaneously by all 512 
beams, which constitutes one ping. Pings are recorded up to 50 times per second. More details of 
sonar data collection are described in Kaplinski et al. (2009, 2014). 



 
Figure 1 Map of survey locations on the Colorado River in Marble (RM30 and RM61) and 

Grand (RM87) Canyons. 
 

A cabled video-microscope system was used to collected high-resolution (0.02mm/pixel) images 
of the bed. The system consists of a video camera fitted with macro lens, inside a protective 
metal housing. The transparent faceplate of the camera housing, fitted with LED lights for 
illumination, makes contact with the bed. Data collection involves navigating to each location, 
turning the boat to face the current, and lowering the video to the bed using an electric winch. 
The video is relayed instantly to the winch operator. For more details about the system, see 
Rubin et al. (2007, 2010). Coordinates of sample locations were measured by tracking the boat 
using a shore-based robotic laser-tracking system from established survey control points 
(Kaplinski et al., 2009). This method allows bed-sediment sampling at moderately high spatial 
density (up to tens of samples over tens of square meters) (Rubin et al., 2010) and hundreds of 
images can be obtained in a few hours. Another advantage of this approach over conventional 
physical sampling is that it samples only those sediments that are exposed on the bed surface. 
This is important because, given the high frequency of the MBES sound source, acoustic 
penetration into the bed is negligible, therefore the measured backscatter amplitude reflects the 



composition of bed surface sediment (and possibly form roughness within the beam footprint) 
only.  

The underwater video camera images were used to characterize bed-sediment, at a point, into 
three categories: 1) ‘sand’: homogeneous sandy surfaces (where no distinction was made 
between plane bed, ripples and dunes); 2) ‘gravel’: coarse substrates encompassing 
homogeneous gravels and sand-gravel mixtures (sand in the interstitial spaces of gravel clasts), 
in the size range deemed to be movable by typical flows; and 3) ‘rock’, a category which 
includes boulders, bedrock ledges, and cobbles large enough to be considered immovable by 
typical flows. These qualitative assessments were made by an experienced field technician 
operating the winch, based on both the image and the feel of the winch as the video housing hit 
the bed surface. 

 
Figure 2 Underwater video images along a ~50m (river left to river right) transect at RM 30, 

showing typical sediment heterogeneity. 
 

Another underwater video camera system - a towed video sled with a wider field of view, 
equipped with powerful lights and lasers for scale - was also used to observe the bed. These data 
were collected at a different time (May 2012) in the RM30 and RM61 pools, along with MBES 
data, and were used to assess the plausibility of sediment classifications applied to an earlier data 
set (outside the calibration). 

DATA PRE-PROCESSING 

Several quality control and quality assurance procedures are performed to ensure only high-
quality amplitude data are used for bed sediment characterization. These checks, detailed in 
Kaplinski et al. (2009, 2014) and Buscombe et al. (2014b), include: 

1. Patch tests to determine the offset angles and timing between the various system 
components.  

2. Beam-angle tests are used to determine the uncertainty of soundings for all beam angles. 
3. Quality assurance assessments performed in real time during the surveys by continuously 

monitoring across-track swaths and comparison between adjacent overlapping sweeps.  
4. Manual sweep editing and systematically stepping through overlapping sweeps. 
5. Automated spatial filtering procedures, designed to identify artifacts based on excessive 

bathymetric slopes; and incorrect beam locations.  



The raw high-frequency echoes recorded by the receive beams MBES are corrected for beam 
geometry effects (angle of sound incidence and area of beam of the sloping bed) and radiometric 
effects (source and transmission losses) using the methods detailed in Buscombe et al. (2014b). 
Backscatter was corrected for water and suspended sediment attenuation using the median size 
and concentration of sand, and concentration of silt and clay. These were available every 15 
minutes from gages in the same survey reach (Griffiths et al., 2012). It was assumed that the 
median silt grain size is 2 μm (Voichick and Topping, 2014). It was further assumed that sand 
and silt are homogeneously mixed through the water column. This assumption is physically 
unreasonable for sand. However, sand suspensions were so dilute so as to make negligible 
difference to the sediment attenuation calculation, so the assumption of homogeneous mixing 
was made for numerical convenience. For water attenuation corrections, measurements of 
temperature and salinity were also available every 15 minutes from sondes at each gaging 
station. 

SPECTRAL ANALYSIS 

Backscatter data from the three survey reaches were processed using the spectral analysis 
methods presented in Buscombe et al. (2014b) which use the (per beam, per ping) amplitudes of 
backscattered sound associated with time-of flight bathymetric soundings (range to the bed). 
This recorded amplitude is either the peak amplitude, or the amplitude associated with the 
highest phase-coherence between the source sound wave envelope and the echo wave envelope. 
Either way, it is considered the integral of the portion of reflected sound at incidence angle from 
all scatterers in the insonified area of the bed (the beam footprint). 

 
Figure 3 Schematic showing hypothesized backscatter distributions and spectra for rough/hard 

substrate (rock) and rough/soft substrate (rippled sand). 
 

The method quantifies the variation in length- and amplitude-scales of backscatter over small 
areas of gridded surfaces, using windowed spectral (frequency domain) analysis (Figure 3). 
Because backscatter is a measure of the hardness (impedance) of a substrate, this approach is 
somewhat independent of the roughness of the topography, which may not be uniquely related to 



a given substrate type (for example, the occurrence of gravel dunes). The method works by 
carrying out spectral analysis of gridded backscatter (the median value per grid cell) that has 
been detrended and tapered (Figure 4). Backscatter power spectra are computed to produce scale 
and amplitude metrics that collectively characterize the length scales of stochastic measures of 
riverbed scattering, termed `stochastic geometries' by Buscombe et al. (2014b). Backscatter 
aggregated over small spatial scales has spectra that obey a power-law in 1D (Figure 4). 
Relationships exist between stochastic geometries of backscatter and areas of rough and smooth 
sediments (Buscombe et al., 2014c). 

 
Figure 4 A window of backscatter (a) is detrended and Hann tapered (b). The 2D power spectral 
density of this surface (c) is collapsed to a 1D form (d) from which statistics are calculated (from 
the data that are statistically significant at the 95% level, shown as black dots) such as the slope 
and the intercept. These statistics have been shown to be sensitive to changing substrate type by 

Buscombe et al. (2014b, 2014c).  
 

A grid size of 0.25 x 0.25 m was chosen for construction of surfaces because this was the 
smallest scale at which there were, consistently across sites, multiple usable soundings. A 
window size of 25 x 25 m was chosen based on examination of individual spectra and the criteria 
suggested by Buscombe et al (2014c). Windows are moved around the surface such that the 
outputs from one window are ascribed to the central cell of the window. The window is then 
shifted by a specified amount in space in 2 directions, and the calculations are repeated. This 
process is repeated until the entire surface has been analyzed by systematic windowing. A shift 
length of 0.25 m (1 grid cell) was chosen so the output surfaces were the same spatial resolution 



as the input surfaces. In this configuration, the value in each output grid cell is the ensemble 
average of 1000 individual spectra for a window passing over that point. 

 

Figure 5 Example of spectral signatures of 3 different sediment substrates at RM 87. Roughness 
(a) is the root mean square variance in amplitude; integral lengthscale (b) is a measure of 

persistence; spectral strength (c) is a measure of power at low frequencies; and spectral exponent 
(d) is a measure of the rate of decay of power with increasing frequency. In each subplot, the dot 

represents the mean quantity per co-located substrate and the bars are the range of values. 
 

SEDIMENT SPECTRAL SIGNATURES 

Four parameters are calculated from each computed log-transformed spectrum, according to the 
methods detailed in Buscombe et al (2014b): 1) the spectral strength, ω, which is the intercept of 
the regression through the statistically significant portion of the spectrum, and a measure of the 
variance in the data at low frequencies (large wavelengths); 2) the spectral exponent, γ, which is 
the slope of the regression through the statistically significant portion of the spectrum, and a 
measure of the decay in power as a function of frequency, or the number of frequencies required 
to describe the data (spectral width) and therefore a measure of how complicated the data is; 3) 
the acoustic ‘roughness’, σ, which is the overall power in the spectrum over all frequencies; and 
4) the integral lengthscale, which describes the lengthscale over which the surface is typically 
statistically significant. These 4 parameters were found by Buscombe et al (2014c) to have the 



strongest correlations with co-located substrate types (Figure 5) identified in the underwater 
video streams. Of these, the spectral strength, exponent and roughness were used to develop an 
acoustic sediment classification because they have high between-substrate variability, low 
between-site variability, low within-substrate variability, and the magnitude of values scale with 
substrate size. 

SEDIMENT CLASSIFICATION 

Towards an aim of classifying each 0.25 × 0.25 m grid cell into three sediment types, Buscombe 
et al. (2014c) developed an approach based on decision tree learning. A decision tree (Breiman et 
al., 1984) recursively partitions the space into smaller homogeneous subsets using a set of binary 
condition rules such that the samples with the same labels are grouped together. The basic 
process is as follows: 1) for each attribute (spectral slope, strength, and roughness), find the 
feature that best divides the training data (attribute value at each substrate location) such as 
information gain from splitting on the attribute; 2) create a decision node that splits on the 
attribute with the highest information gain; and 3) recurse over the sub-lists obtained (at 
descendant nodes) by splitting on the previous decision node until no more splits are possible. 
More details are provided in Buscombe et al. (2014c).  

 
Figure 6 Decision surfaces of paired parameters based on aggregation of observations from 

RM30, RM60 and RM87 pools (circles), with a constraint that each decision node must have at 
least 50 samples: (a) ω and -γ ; (b) ω and σ; and (c) -γ and σ. The yellow, grey and red portions 
of the parameter space show where the decision tree would classify as sand, gravel and rock, 

respectively. 
 
Classifications were carried out using a calibration based on data aggregated from all three sites 
(RM 30, RM 61, and RM 87). Trees were constructed with a single constraint that a minimum of 
50 samples were required to be at a terminal node. The decision surface (Figure 6) shows the 
observations as colored markers, and a relatively straightforward partitioning of space between 
pairs of the 3 spectral parameters input into the decision tree algorithm. An example work flow 
from map of gridded corrected backscatter, to maps of spectral quantities with the same 
resolution, to final classification, has been provided for the RM 30 site (Figure 7). The 
classification skill for sand, gravel and rock is 97, 81, and 95 % respectively. Finally, another 



sediment classification map is provided for RM 61 (Figure 8) overlying an aerial photo for 
geomorphic context. 

 

Figure 7 Example of processing stages from data collected at RM 30. Upstream to downstream is 
bottom left to upper right. Each map is a 3D DEM of the survey pool draped with a different 

quantity. From gridded acoustic backscatter (top), various maps of spatially explicit stochastic 
geometries (middle), derived from the windowed spectral analysis procedure, are merged in a 

decision tree classification to produce a map of sediment types (bottom). 



 
Figure 8 Example of sediment classification map at RM 61. 

 
SUMMARY 

Capturing the spatial variability in classifications of riverbed sediments is challenging using 
high-frequency hydro-acoustic instruments. However, the method proposed by Buscombe et al 
(2014b, 2014c) has been shown to be potentially useful to classify grain-scale roughness and 
hardness on the Colorado riverbed in Marble and Grand Canyons. The method uses high-
frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed 
sediments by type (sand, gravel, rock) continuously in space and at small spatial resolution.  

Spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter 
are related to patches of riverbed surfaces composed of known sediment types, as determined by 
geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are 
found to be poor discriminators between sediment types. However, the variance of the power 
spectrum, and the intercept and slope from a power-law spectral form (termed the spectral 



strength and exponent, respectively) successfully discriminate between sediment types. A 
decision tree approach to classifications was able to classify spatially heterogeneous patches of 
homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 
91% accuracy, respectively. This data-driven approach allows bed sediment classifications at 
unprecedented resolution.  
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