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Abstract: When classic equations are used to study the sediment movements in open-channel flows, some 

problems appear, relating to: (i) the non-linearity of the equations, (ii) the complexity of the liquid and solid 

interactions and (iii) the unawareness of the liquid and solid movement’s changes. The Random Theory avoids such 

problems and proposes a kinematic analysis of the flow and solid particles movements, exploiting, simultaneously, 

the open flux turbulent characteristics. The two-dimensional suspended sediment or pollutant trajectories  (x,z,t) 

result from the combination of two 1-D chronological displacements series in the i = 1, 3 senses, intercalated with 

periods of time when the grain does not move in these senses. These two series are interdependent. When the one-

dimensional series are described by Homogeneous Poissonian Random Process, the resultant two-dimensional model 

is also Homogeneous Poissonian, defined by four mobility density functions, which characterize the particles’ 

movement. The objectives of this work are: (i) to present the longitudinal and vertical two-dimensional Random 

Process Model; (ii) to calibrate and validate it, using radiotracers data from laboratory channels experiments; (iii) to 

show that the Random Theory may be applied to evaluate the 2-D sediment and pollutant movements in open-

channel flows, for instantaneous and continuous injections conditions. To validate the model, data obtained from 

radioactive applications in a prismatic channel 12.0 m long, 0.40 m width and 0.60 m height of the Central Hydraulic 

Laboratory of France – LCHF were used. They have showed that the 2-D Random Process may describe, with 

precision, the suspended movement of fine sediment particles and/or contaminants in open channel flows, whatever 

kind of immersion may be.  

INTRODUCTION 

The bed and suspended load movements of sediments and contaminant particles in open channel flows characterize 

stochastic process, where the elementary events are the single grains' trajectories. They are dependent of the liquid 

phase turbulent structure, or in other words, of the hydrodynamic process. The trajectories or achievements of the 

single particle or of the group of particles can be analyzed by Lagrangean or Spatial and Eulerian or Temporal 

Descriptions and by the Random Processes Theory. Two stochastic processes are considered: 
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that characterizes the evolution of the particle's position vector as a function of time, which longitudinal, lateral and 

vertical components are X(t,ω), Y(t,ω) and Z(t,ω), respectively. The second 3D stochastic process: 
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characterizes the particle's passing time by the point of coordinates (x,y,z). 

T(x,ω), T(y,ω) and T(z,ω) represent the times spent by the particle to travel the distances 0x, 0y and 0z, respectively. 

ω represents the trajectory or the sediment particle achievements, as presented in Figure 1, following. Xti(ω) and 

Txi(ω) processes can be defined by their Probability Distribution Functions: 

      321i0xxtXPxF
iiiit

,,;;,    (3) 

      321i0ttxTPtQ
iix

,,;;,    (4) 



 

which are related to each other by Todorovic´'s Equation (5) (Todorovic´ et al., 1966; Wilson-Jr., 1987): 
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They had shown that the Probability Distribution Function of these random processes can be expressed in terms of 

two pairs of Approximate Functions Ft1 (xi) and Ft2 (xi); Qx1i (t) and Qx2i (t); i = 1,2,3, respectively, such that: 
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In each direction, e. g. in the longitudinal direction 0xi = 1, where xi = x1 = x, the Approximate Distribution Functions 

Ftj (x) and Qxj (t), j = 1,2 can be explained as functions of two new stochastic processes 
x0

n
G ,

and 
t0

n
E ,

 from the same 

elementary events ω: 
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which represents the medium number of grain displacements, µ0, x  over the distance [0, x], and,  
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the medium number of grain displacements, η0, t over the time period [0, t]. 

x0

n
G ,

and 
t0

n
E ,

are Markovian Processes with similar properties. So, for the set 
x0

n
G ,

, it has: 

 

     

   

     

  







































1GP

xxkx1GGP

2xGGP

xxkxGGP

00

0

2

x0

k

xxx

0

x0

k

xxx

2

x0

k

xxx

1

,

,,

,,

,,

,

,















 Δx → 0 (10) 

where ϑ(Δx) is a grain first order infinitesimal displacement distance. 

The 
x0

n
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and 
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n
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 occurrence probabilities are solutions of the system of equations derived from these properties: 
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with the following initial conditions: 
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Similar analytical expressions to the Equations (10), (11) and (12) are obtained for the 
t0

n
E ,

process. The solution of 

these differential equations yields the probability laws for the numbers of displacements in time and spatial intervals. 

Two functions λ1 (t,n) and λ2 (x,n) appear, which describe the sediment particle mobility, in time and in that particular 

direction xi=1 = x1 ≈ x. Considering the three directions of the orthogonal axes 0xi, i = 1, 2, 3, three pairs of Mobility 

Functions λ1i (t,n) and λ2i (xi,n) are obtained, which describe the sediment grains 3D movements, in time and space. In 

each xi direction it has been:  
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PARTICLES' RANDOM TRAJECTORIES 

The particle's trajectory ω results from the combination of three chronological displacement series: (i) an alternate 

series of longitudinal displacements in the direction of the flow, with intercalated periods of time when the particle 

ceases to progress in this sense; (ii) an alternate series of vertical displacements in the direction of gravity , with 

intercalated periods when the particle ceases to decant; (iii) a series of lateral displacements, with intercalated periods 

when the particle ceases to move laterally, as shown in Figures 1 and 2 (Wilson-Jr., 2004). One can observe that: (1) 

when the particle ceases to progress in the direction of flow, it can be decanting or moving laterally, (2) when it 

ceases to decant, it can be moving in the longitudinal or lateral directions, (3) when it ceases to progress towards one 

of the walls, it can be decanting or moving in the longitudinal direction. In this manner, the three series are 

interdependent and should be considered together.  

 
 

Figure 1. Sediment particle trajectory and its components in open 

channel flow (Wilson-Jr., 2004) 
 

Figure 2. Particle trajectories on the horizontal ωXY 

and vertical ωXZ plans and longitudinal chronological 

series ωX (t) (Wilson-Jr., 2004) 

As positive longitudinal and vertical displacements are predominant these random series are more appropriate to 

describe the particle movements than the series of lateral displacements, where the negative movement (opposite to 

the direction of one of the walls) no can be neglected. Thus, the 2D resulting Random Processes that characterize the 

Lagrangean and Eulerian Descriptions, become respectively equal to: 
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OBJECTIVES 

General Objectives 

The general purpose of this work includes the study of Lagrangean and Eulerian Descriptions of bed and in 

suspension sediments and contaminants particles' movements and cases of instantaneous and continuous immersion 

of these particles in open channel flows, using the Theory of Random Process. 

Specific Objectives 

In particular, it is intended: (i) show that the Theory of Random Process accurately describe the 2D movements, 



 

longitudinal and vertical, of sediment and pollutants in open channel flows; (ii) present the 2-D Poissonian models of 

sediments and contaminants in longitudinal and vertical suspension movements; (iii) highlight the importance of 

Temporal and Spatial Intensity Mobility Functions in the definition of random models, as well as in calibration and 

validation of 2D models, with data obtained in laboratory channels and nature. 

3-D LAGRANGEAN RANDOM PROCESS 

To better illustrate the ω trajectories of the particles, it will adopt Lagrangean Description of the Random Processes 

Xti(ω), i = 1,2,3; shown in Figure 2. 

Probability Density Function ft (x, y, z) 

Conceding the mutual independence of the Random Processes Xti (ω), i = 1,2,3; the Probability Distribution Function 

of the particles' position with respect to time can be simplified, and be described by the general equation (Sayre and 

Conover, 1967; Wilson-Jr., 1987, 2004): 

 
   

 
 

 


  








0n

tN

0j

j

tN

0j

j

tN

0j

jt
ntNzZyYxXPzyxF ,,,,,  (16) 

where N(t) represents the number of particle displacements in time interval [0,t]. Thus, the Probability Density 

Function of the position of the particle in time t, is given by: 
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The pairs of Mobility Functions λ1i (t,n) and λ2i (xi,n), i = 1,2,3; also called Particle Kinematic Change Functions, 

characterize the particles temporal and spatial movements, respectively (Wilson-Jr., 1987; Monteiro, 2004; Wilson-Jr. 

and Monteiro, 2013). When the probability of the grains' displacements, in time and distance intervals [t, t+Δt] and 

[x, x+Δx], Δt and Δx tending to zero, are independents of time, particle position and previous displacements, i.e., 

independents of the sediment particle history, the particle movement is called out of memory. In this case, the 

Mobility Functions are positive constants and the Density Probability Functions ft (xi), i = 1, 2, 3 are described by 

Homogeneous Poissonian Random Processes (Wilson-Jr., 1987). For the 3D model results: 
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For any kind of sediment and/or pollutant immersion, if there is no loss or gain of particles in the course of time and 

distance, the total volume occupied by the particles is preserved after immersion time td. That is, it has been: 
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To illustrate the performance of the 3D model components, plots of the probability density functions for some values 

of the mobility functions λ1i and λ2i, i = 1,2,3, are presented in Figures 3, 4 and 5 (Wilson-Jr., 2004). The mobility 

values are obtained by comparing the experimental and theoretical variations of the particles' position moments as 

function of time, and/or of the particles' passing time moments through cross sections. T
-1

 and L
-1

 in the figures 

correspond to the units of λ1i and λ2i, i = 1,2,3, that is, the inverse of time and length units, respectively.  



 

 

Figure 3. Probability density function of 

lateral displacements in time. 

(λ1y = 0.07T-1; λ2y = 0.90L-1) 

 

Figure 4. Probability density function of 

vertical displacements in time. 

(λ1z = 0.15T-1; λ2z = 1.15L-1) 

 

Figure 5. Probability density function of 

longitudinal displacements in time. 

(λ1x = 0.15T-1; λ2x = 3.50L-1) 

To determine Probability Density Functions ft(x), ft(y) 

and ft(z), the software PAICON (Processos Aleatórios 

com Injeção Instantânea e CONtínua) was used, 

implemented in Delphi language from Inprise 

Corporation (Monteiro and Wilson-Jr., 2002; Monteiro, 

2004). These curves are fitted to the experimental results 

of projects on sediment and pollutants' transport and 

dispersion with the use of tracers: radioactive, 

fluorescents or chemicals, among others. In the Figure 6 

is shown the points of the Rhodamine-B transit curve 

through a River Loire's cross section and the upper and 

lower theoretical probability density approximate curves 

qxj (t), j = 1,2, adjusted with the use of the PAICON 

Program (Monteiro and Wilson-Jr., 2003). The tracer 

application technique known as Double Labelling 

Method (Méthode de Double Marquage) was used. 

Simultaneous labelings and injections of water and fine  

 

Figure 6. Rhodamine-B transit curve through the Veauche-

Veauchette Bridge section, on the River Loire  

(Tola et al., 1981; Monteiro and Wilson-Jr., 2003) 

sediments (special type named schlam) with Rhodamine-B and Au
198

, respectively, allowed a comparative study of 

sediment and fluid transfer properties, in the segment between Grangent and Villerest Dams, on the River Loire (Tola 

et al., 1981; Wilson-Jr., 1987). 

Intensity of Particle Mobility Functions 
The Mobility Functions λ1i and λ2i, i = 1,2,3, defined by Equations (13) appeared from the analytical development of 

Random Processes Xti(ω) and Txi(ω) to explain sediment mobility in each direction i and on the instant t. Different 

models can be obtained from the mathematical expressions that define these mobility functions, which should 

consider the sediment and/or contaminant particle characteristics, as well the hydrodynamic properties. The general 

expressions for λ1i and λ2i, i = 1,2,3, obtained by Vukmirovic´(1975) and Wilson-Jr. (1987, 2012) consider the 

mobility of the particles as a function of time, of the distances traveled in one direction and of its past performance in 

time (n) and distance (k), in each direction (i): 
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where: λ1i is the particle mobility factor in a given time t in the direction i; and 

  λ2i the particle mobility factor in a certain position xi in the direction i. 

 



 

2-D HOMOGENEOUS LAGRANGEAN RANDOM POISSONIAN PROCESSES 

For these cases the grain mobility functions in the longitudinal and vertical directions assume constant values in 

accordance with Equation (22), or simply: 
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Some of the main statistical properties that characterize the 2-D Homogeneous Lagrangean Random Process Xt (x,z), 

for cases of instantaneous and continuous immersions, are analytically described by the following equations 

(Monteiro, 2004; Wilson-Jr. and Monteiro, 2004): 

Instantaneous Immersion Case 
Probability density function ft (x,z) 
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Probability distribution function Ft (x,z) 
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Median position of particles Mt (x,z) 
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Continuous Immersion Case 
This case consists of a uniform injection, laterally distributed in the free surface at the channel's upstream extremity 

during a period of time td, as illustrated in Figures 7 and 8. In the experiments conducted at the LCHF (Laboratoire 

Central d'Hydraulique de France), td varied from 7.0 to 13.0 minutes (Wilson-Jr., 1987). 

 

 
Figure 7. Immersion and detection system of bed and suspended 

movements of fine sediments in laboratory channel (Wilson-Jr., 1987) 

 

Figure 8. Continuous immersion of fine 

sediments on the free surface of LCHF's channel 

In the following equations to ≥ td represents the period of time of continuous recording of tracer's passage by the 

sampling points. To shorten the text, only the statistical properties related to the upper approximate probability 

density function of the 2-D Homogeneous Lagrangean Random Processes Xti(ω), i = 1,3 will be presented. 

Probability density function hto (x,z) 
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For the 2-D Poissonian Random Process, the upper approximate probability density function hto2(x,z) becomes: 
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Probability distribution function Hto (x,z) 
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The distribution functions Fto-τ (x) and Fto-τ (z) are obtained from the 1-D models approximate equations in the 

longitudinal and vertical directions, respectively, that is, from the 1-D Homogeneous Poissonian equations system, in 

the i = 1, 3 directions, with instantaneous immersions (Monteiro, 2004): 

       01xFxFxF00
i2titi1t

..   (36) 

 

 
   

 
   









































!!

!!

k

xt
exF

k

xt
exF

k

ii2

k

i1

0

xt

i2t

k

ii2

1k

i1

0

xt

i1t

ii2i1

ii2i1





























 (37) 

Thus, for the Upper Approximate Probability Distribution Function F(to-τ)2(xi), i = 1,3, it has been:  
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Average position of the particles 

The average position of the particles is given by the first-order moment, defined by: 
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which can be estimated by two approximate first order moments, such that: 
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Combining Equations 28, 29, 30, 39 and 40, one obtains the approximate expressions of the average position of the 

particles. The upper approximation is given by: 
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Variance of the particles' position 

Similarly, one can obtain the approximate expressions of the second order moment and of the Variance  from the 

following definitions: 
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SUSPENDED SEDIMENT MOVEMENTS IN LABORATORY OPEN CHANNEL 

An original experimental device was developed for the study of bed and suspended load with vertical transfers in a 

LCHF's channel 12.0 m long having a rectangular cross section 0.40 m wide by 0.60 m deep (Wilson-Jr., 1987). The 

lateral walls are made of glass, allowing for visual observations of bed configurations evolutions and the following of 

injections of sediments labeled with tracers. The channel was adapted, as schematized in Figure 7, such that hydraulic 

and sedimentologic measurements could be performed simultaneously with conventional methods.  

Among several hydraulic and sedimentologic measurements performed, the following are highlighted: (i) the 3-D 

liquid velocities field; (ii) transport and dispersion of bed load particles; (iii) the vertical and transversal concentration 

profiles of suspended sediments continuously injected in the open surface of the channel, during time intervals; and 

(iv) the temporal and specific evolutions of the sediments deposited in the channel bed.  



 

Examples of vertical profiles of cohesive and non-cohesive sediment concentration obtained in cross sections of the 

channel are presented in Figures 9 and 10, while examples of similar theoretical curves obtained from the probability 

density functions ft (x,z) are shown in Figure 11. 

 

Figure 9. Vertical profiles of suspended 

cohesive sediment concentration across 

fixed section (Wilson-Jr., 1987) 

 

Figure 10. Vertical profiles of suspended 

non cohesive sediment concentration 

across fixed section (Wilson-Jr., 1987) 

 
Figure 11. Theoretical vertical profiles of 

suspended cohesive sediment 

concentration across fixed section. 

The comparison of these theoretical and experimental curves indicate that the 2D Random Models are so promising 

as the 1D models that the authors have been applied in laboratory channels and nature, in projects and investigations 

of Civil and Environmental Engineering. 

SUSPENDED SEDIMENT MOVEMENTS RESULTS 

Mendes and Wilson-Jr. (1998), Wilson-Jr. and Monteiro (2004) showed that the Homogeneous One-dimensional 

Poissonian Models described precisely the sediment and pollutant passage time through open channel cross sections. 

Data from experiments performed in Brazil and France consisting on the instantaneous immersion of tracers in 

suspension an upstream section and on the determination of the transit time's curves through some downstream cross 

sections were used for the 1-D applications using the PAICON-1D software. Some of these applications are 

highlighted in Wilson-Jr. and Monteiro (2004, 2013).  

For the implementation of 2-D Poissonian models, the PAICON program was restructured to include the two-

dimensional case and modern techniques of graphic outputs. This PAICON-2D version calculates the values of the 

approximate probability density and distribution functions of the Lagrangean and Eulerian descriptions, to estimated 

or experimentally obtained values of the λ11; λ13; λ21 and λ23 Mobility Functions. 

To calibrate and validate the 2D Random Models is necessary to determine the values of these functions in the 

directions: longitudinal (λ11 and λ21) and vertical (λ13 and λ23). They are determined by the probability density 

functions moments of first and second order in each direction and by the longitudinal and vertical mean velocity of 

the particles, namely by Equations (44) to (47), following (Wilson-Jr. and Monteiro, 2013). 

Temporal and spatial mobility of the particles in the xi; i=1,3 directions 
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Longitudinal and vertical mean positions of a group of particles 
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Variances of the longitudinal and vertical positions of a group of particles 
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Longitudinal and vertical mean velocities of a group of particles 
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Each pair of values of the Mobility Functions describes the sediment grain movement in one direction. The results of 

the evolution in time of their approximate superior probability density function are shown in Figures 12 and 13.  

 

 
Figure 12. Cloud of sediments due to an instantaneous immersion at the free surface: 

case of equal longitudinal and vertical mobility. 

(1x = 1z = 0.10 s-1; 2x = 2z = 10.0 m-1; Ux =Uz = 0.01 m s-1) 
 

 
Figure 13. Cloud of sediments due to an instantaneous immersion at the free surface: in 

which case longitudinal mobility is greater than the vertical. 

(1x = 1.0 s-1; 1z = 0.10 s-1; 2x = 2z = 10.0 m-1; Ux= 0.10 m s-1; Uz= 0.01 m s-1) 

Their values are proportional to the concentration of sediment in suspension injected instantly to the free surface of a 

section located at the upstream extremity of the flow, for the cases where: (i) longitudinal and vertical mobility are 

equal; (ii) in the case of fine sediment which longitudinal mobility is about one order of magnitude higher than its 

vertical mobility or settling velocity. Similar studies were considered in the case of a continuous immersion for a time 

[0, td] for td equal to 120 seconds. They are shown in Figures 14 and 15. 



 

 
Figure 14. Plume of sediments due to continuous immersion at the free surface 

during the time interval [0, td]: case of equal longitudinal and vertical mobility. 

(1x = 1z = 0.20 s-1; 2x = 2z = 10.0 m-1; td = 120 s; Ux = Uz = 0.02 m s-1 ) 

 

 
Figure 15. Plume of sediments due to continuous immersion at the free surface 

during the time interval [0, td]: in which longitudinal mobility is greater than the 

vertical. (1x = 2.0 s-1; 1z = 0.10 s-1; 2x = 2z = 10.0 m-1; Ux= 0.20, Uz= 0.01 m s-1) 

CONCLUSIONS AND RECOMMENDATIONS 

The Random Theory has shown that the trajectory ω of the particle results from the combination of two chronologic 

series of movement periods: (i) an alternate series of longitudinal downstream steps intercalated by time periods 

when the particle does not move in this sense, and (ii) an alternate series of fall vertical steps intercalated by time 

periods when the grain does not move vertically. These series are defined by the Mobility Functions: λx1(t,n), λz1(t,n), 

λt2(x,n) and λt2(z,n), which analytical expressions characterize the particles random movements. 

 

It has been shown that the Random Process Theory is very enveloping, in such way that the diffusion dispersion 

Fickian classical equations of suspended sediment and pollutant movements are particular random process cases, 

characterized by constant values of the mobility functions, or in other words, by Homogeneous Poissonian Models. 



 

 

When the sizes and concentrations of the sediment grains are reduced (fine sand, clays, and mud mixtures with 

concentrations lower than 150 mg/l), the solid particles behave as those of the fluid and the 1-D suspended movement 

can be described by 1-D Homogeneous Poissonian Models. This results is not surprising, since for large values of x 

and t, the Poissonian Model approaches the Gaussian Model, classical solution of the Diffusion-Dispersion equation. 

 

When the grain mobility is not constant, more complexes models are generated, combining longitudinal and vertical 

non-homogeneous Poissonian and non-Poissonian models. Mobility Functions obtained in open channel flows, with 

grain of sediment labeled with radiotracers, permit the determination of the Mobility Functions and to adjust and 

validate the resultant random models. 

 

Two research lines are opened: (i) the study of sediment and/or pollutant movement described by Mobility Functions 

that vary with time, distance and number of displacements performed in time and space, that is, performed by 

particles with memory; (ii) a description of the sediment movement by 2-D and 3-D processes. For these courses, a 

collection of data on sediment and pollutant movement obtained in laboratory channel and in nature with use of 

radioactive, dyes and chemical tracers is available for the use of this powerful Theory of Random Processes. 
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