
SAINT-VENANT MODELING FOR LARGE RIVER BASINS – 
CHALLENGES AND DATA NEEDS 

 
Ben R. Hodges, Assoc. Professor, Department of Civil, Architectural, and Environmental 

Engineering, University of Texas at Austin, hodges@utexas.edu; Frank Liu, Research 
Scientist, IBM Research Austin, frankliu@us.ibm.com; Alfredo Hijar, Graduate Student, 

University of Texas at Austin, ahijar@utexas.edu 
 

INTRODUCTION 
 
River networks in continental-scale river basins – e.g. the O(106) river miles in the Mississippi 
basin – to date have used only with reduced-physics models. These models cannot represent the 
momentum dynamics and water depth evolution available with the full Saint- Venant (SV) 
equations derived by cross-section integration of the Navier-Stokes equations. Momentum and 
water depth are valuable for mechanistic sediment modeling, and hence their neglect in reduced-
physics models is a severe limitation. Reduced-physics models are generally justified with the 
argument that SV models are too computationally expensive for large networks (Hodges, 2013). 
However, recent advances in computational methods have made SV equations a practical option 
(Hodges and Liu, 2014; Liu and Hodges, 2014), but challenges remain in developing large-scale 
applications. In this presentation we discuss the problems, challenges, and some possible 
solutions for creating data sets combining surveyed and estimated channel geometry over large 
river basins. The key open question is with regard to data requirements: what is the level of 
cross-sectional detail that is actually needed for SV solutions, vice the data detail that is 
typically obtained in surveys? Ideas from hydraulic geometry combined with historical stage-
discharge data can be used to develop estimated cross-sectional data, which are useful where 
surveyed data are unavailable. Although it is likely that for the foreseeable future we will not 
have comprehensive survey data for entire river basins, we can use available data to estimate 
geometry for dynamic equation solutions rather than a priori reducing the physical processes 
represented. 
 

SPRNT MODEL 
   
The Simulation Program for River Networks (SPRNT) was developed by Liu and Hodges (2014) 
to demonstrate that the SV equations can be solved efficiently for large river networks without 
linearization. This initial work showed that O(105) computational elements in a river network 
could be solved for an unsteady SV solution 330× faster than real time using an ordinary 
desktop workstation without any parallel processing. As is the case for any SV solution method, 
SPRNT input data includes: (i) the river network topology, (ii) the channel slope (S0) of each 
element in the network, (iii) representative channel cross-sections for each element, and (iv) the 
channel roughness. SPRNT uses the conventional Manning's n and a SV formulation with flow 
rate (Q), and cross-sectional area (A) as solution variables: 
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where Sf is the friction slope and   qℓ is the lateral flux from the landscape. The local water depth 
(h) is an auxiliary function that depends on the cross-section geometry i.e. h = h(A). Using the 
Chezy-Manning equation for Sf allows one to write ASf = n2Q2F, where F = P4/3A-7/3 is an 
equivalent friction geometry with P as the wetted perimeter of the cross-section. Note that F-1 = 
ARh

4/3, where Rh is the traditional hydraulic radius that appears in the Chezy-Manning equation:  
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Thus F is simply a convenient approach to wrapping the cross-sectional dimensional 
relationships of Chezy-Manning into a single term. In SPRNT the full nonlinear discrete 
equations are solved with an iterative Newton-Raphson method using acceleration methods that 
have previously been applied in microprocessor design. 
 
 

DATA NEEDS FOR SAINT-VENANT MODELING 
 
The critical data needed for SPRNT are not detailed x:y surveys of every cross-section, but 
instead for auxiliary functions for h = h(A) and F = F(A) that are abstractions of the cross section. 
Obviously, given discrete x:y survey data it is straightforward to compute discrete h:A and F:A 
for each element. However, in the absence of comprehensive surveys: how can we approximate 
the auxiliary functions from other data? As a further issue, the discrete h:A and F:A functions for 
a survey will generally have significant discontinuities such that naive application of raw data 
provides jacobians for the Newton-Raphson solution in SPRNT that are insufficiently smooth. 
That is, the Saint-Venant partial differential equations can only approximate a smooth system, 
which a priori requires h(A) and F(A) be smooth functions, which in turn requires A(h) and 
  ∂A / dh  must be smooth. Turning this idea on its head, if we have some approximation of A(h) 
that is smooth, we can easily obtain a smooth wetted perimeter P(h) that is consistent with A(h), 
and hence compute F(A) and h(A) functions for a SV solution. Thus, the critical question for SV 
modeling is not the precise, detailed survey shape of the cross-section, but what is a smooth 
approximation of A(h) that can be estimated from available data? We are investigating several 
avenues for this approximation, which will be discussed in the presentation. 
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